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Fujiwara defined, through the concept of family of basic mapping-

formulas between single-sorted signatures, a notion of morphism
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In this article we extend the theory of Fujiwara to the, not nec-

essarily similar, many-sorted algebras, by defining the concept of
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sumed the standard signature morphisms, the derivors of Goguen-

Thatcher-Wagner, and the basic mapping-formulas of Fujiwara.
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After this, by means of the homomorphisms between

Bénabou algebras, we define the composition of polyderivors

from which we get the category Sigpd, of many-sorted sig-

natures and polyderivors. Next, by defining the notion of

transformation between polyderivors, which generalizes the

relation of conjugation of Fujiwara, we endow the category

Sigpd with a 2-category structure. From this we obtain a 2-

category Spfpd, of many-sorted specifications, in which we

prove that, for every set of sorts S, the specifications BS , of

Bénabou for S, and HS , of Hall for S, are equivalent, and,

after defining a pseudo-functor Algsp
pd from Spfpd to Cat, we

prove that, for every set of sorts S, the categories Alg(HS),

of Hall algebras for S, and Alg(BS), of Bénabou algebras for

S, are equivalent. These last equivalences were used in an

earlier article to give an alternative proof of the Complete-

ness Theorem of many-sorted Equational Logic based on the

categories Alg(BS), which are isomorphic to the categories

BThf(S), of finitary many-sorted algebraic theories for S.

Therefore, in this case, Algsp
pd provides a justification for the

existence of such alternative proofs.

.1 Introduction.

The closed sets of operations, or clones, on a set A were initially defined

and investigated by P. Hall, as pointed out by Cohn in [6], pp. 127 and 132

(who attended the lectures by Professor P. Hall from 1944 to 1951), to show

that the crucial mathematical properties of a Σ-algebra A = (A, (Fσ)σ∈Σ)

do not depend on the family of primitive operations (Fσ)σ∈Σ on A, but on

the system of all operations on A obtainable from (Fσ)σ∈Σ by means of the

operations of composition.

The concept of an ordinary clone, axiomatized by P. Hall as a single-

sorted partial algebra subject to satisfy some laws (see [6], p. 132) and,

independently but subsequently, by M. Lazard as a compositor (see [20],

p. 327), was generalized to that of a many-sorted clone by Goguen and

Meseguer in [12], and axiomatically defined by them (in [12], pp. 318–319)

as any many-sorted algebra (of the appropriate signature) that satisfies a
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definite system of many-sorted equational laws. Given its origin in P. Hall,

we agree to refer to the many-sorted algebras that are models of the just

mentioned laws as Hall algebras.

Hall algebras, as reflected by the defining axioms, are a species of al-

gebraic construct in which the essential properties of the fundamental pro-

cedures of substitution, for the many-sorted terms in the free many-sorted

algebras, and of composition, for the many-sorted-operations on sorted sets

are embodied. And this is precisely one of the reasons why Hall algebras

are a powerful and fundamental instrument to investigate many-sorted alge-

bras. To this we add that Hall algebras are not only worth of study because

of its source in the above mentioned procedures. Besides that, Hall alge-

bras are interesting in themselves since they furnish important examples

of equationally defined many-sorted algebras, and also because they have

been used by Goguen and Meseguer in [12] to prove the Completeness The-

orem of finitary many-sorted equational logic (that generalizes the classical

Completeness Theorem of finitary equational logic of Birkhoff), providing

in this way, a full algebraization of many-sorted equational deduction.

Another approximation to the study of many-sorted algebras has been

proposed by Bénabou in [1], by making use of the finitary many-sorted

algebraic theories, that are the generalization to the many-sorted case of the

finitary single-sorted algebraic theories of Lawvere in [19]. The equational

presentation of the finitary many-sorted algebraic theories of Bénabou gives

rise to what we have called Bénabou algebras. And the Bénabou algebras,

even having a many-sorted specification different from that of the Hall

algebras, are also models of the essential properties of the clones for the

many-sorted operations.

For an arbitrary, but fixed, set of sorts S, the many-sorted specifications

HS , for Hall algebras, and BS , for Bénabou algebras, are not isomorphic in

the category Spf , of many-sorted specifications and many-sorted specifica-

tion morphisms, because between the corresponding categories of models:

Alg(HS), of Hall algebras, and Alg(BS), of Bénabou algebras, there is not

any isomorphism. However, the many-sorted specifications HS and BS can

be considered, in some definite way, as being equivalent, as a consequence

of the proof, in the fourth section about Hall and Bénabou algebras, of the

categorical equivalence between the categories Alg(HS) and Alg(BS).

But, the semantical equivalence of the many-sorted specifications HS

and BS , or, for that matter, of any two many-sorted specifications, under-
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stood, by convention, as meaning the categorical equivalence of the canon-

ically associated categories of models, can not be properly reflected at the

purely syntactical level of the many-sorted specifications and many-sorted

specification morphisms, i.e., can not be mathematically defined in the

category Spf . And this is so, essentially, as a consequence of the fact of

not having actually endowed Spf with a (non trivial) 2-category structure.

Thus, if one remains anchored in the tradition of viewing Spf as being,

simply, a category, then the only reasonable way of classifying many-sorted

specifications from within the category Spf is through the categorical con-

cept of isomorphism, and not, by structural impossibility, by means of some

other notion of equivalence between many-sorted specifications, itself being

strictly weaker than that of isomorphism (as it would be the case if instead

of having a category, we had a 2-category).

Therefore, what is really needed to settle the problem of the equiva-

lence between many-sorted specifications (i.e., the problem of determining

whether or not two many-sorted specifications determine equivalent cat-

egories) is to have at one’s disposal some way of comparing many-sorted

specifications that goes, strictly, beyond the mere isomorphisms, in the

same way as equivalences go beyond the isomorphisms when comparing

categories among them. We suggest in this article that an adequate way of

providing a solution to the just mentioned problem is by constructing suit-

able 2-categories of many-sorted signatures and many-sorted specifications,

through the appropriate definitions of the 2-cells between the 1-cells. This

bidimensionality, by supplying one additional degree of freedom, generates

a richer world, that opens the possibility to deal not only with isomor-

phic but also with adjoint and equivalent many-sorted specifications. Thus

carrying further the previous development which was not sufficiently com-

plete because of its restriction to categories. The methodology we have

followed in order to find a solution of the equivalence problem will now be

considered.

It consists in generalizing the theory of Fujiwara in [8] and [9] into

several directions. Firstly, by defining the concept of morphism of Fuji-

wara, henceforth abbreviated to polyderivor, from a many-sorted signature

into another, which assigns to basic sorts, words and to formal operations,

families of derived terms, and this in such a way that under the concept

of polyderivor falls the concept of derivor, defined in [13], and that of

morphism between many-sorted algebraic theories. Secondly, by endowing
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the category of many-sorted signatures and polyderivors with a 2-category

structure, by defining the appropriate transformations between the poly-

derivors, that generalize the equivalences defined by Fujiwara in [9], and

allow richer comparisons between many-sorted signatures than the usually

considered. Lastly, by introducing the corresponding 2-category of many-

sorted specifications, polyderivors between many-sorted specifications, and

transformations from such a polyderivor into another.

By using the machinery introduced we prove, as a notable example, the

equivalence between the many-sorted specifications of Hall and Bénabou.

And from this we get, as an immediate consequence of the existence of a

certain pseudo-functor from the 2-category Spfpd, of many-sorted specifi-

cations, to the 2-category Cat, the equivalence between the categories of

Hall and Bénabou algebras. This, we believe, helps to understand, from a

purely categorical standpoint, how some equivalences between categories,

e.g., that between clones (represented by Hall algebras) and finitary many-

sorted algebraic theories (represented by Bénabou algebras), arise from

more primitive syntactical equivalences between some many-sorted specifi-

cations associated to them.

Every set we consider, unless otherwise stated, will be a U-small set or

a U-large set, i.e., an element or a subset, respectively, of a Grothendieck

universe U (as defined, e.g., in [21], p. 22), fixed once and for all. Besides,

we write Set for the category canonically associated to U , and, depend-

ing on the context, we agree that Cat denotes either, the category of the

U-categories (i.e., categories C such that the set of objects of C is a sub-

set of U , and the hom-sets of C elements of U), and functors between

U-categories, or the 2-category of the U-categories, functors between U-

categories, and natural transformations between functors.

In all that follows we use standard concepts and constructions from cat-

egory theory, see e.g., [3], [7], [15], [18], and [21]; classical universal algebra,

see e.g., [6] and [14]; categorical universal algebra, see e.g., [1] and [19]; and

many-sorted algebra, see e.g., [1], [2], [12], [16], and [22]. Nevertheless, we

have generically adopted the following notational and terminological con-

ventions. For a set S we write T⋆(S) = (S⋆,f, λ) for the free monoid on S,

where S⋆, the underlying set of T⋆(S), is
⋃

n∈N
Sn, the set of all words on

S, f the concatenation of words on S, and λ the empty word on S. For a

word w on S, |w| is the length of w. Moreover, T⋆ = (T⋆, ≬,f) is the stan-

dard monad in Set for the monoid specification, where T⋆ is the composi-
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tion of the free monoid functor T⋆ : Set // Mon and the forgetful functor

GMon : Mon // Set, and, for every set S, ≬S : S //S⋆ is the inclusion of

S into S⋆, and fS : S⋆⋆ // S⋆ is the merging of strings of words to words.

To simplify notation, we let (s) stand for ≬S(s). Furthermore, if ϕ : S // T

and ψ : S // T ⋆ are mappings, then ϕ⋆ is the unique homomorphism from

T⋆(S) to T⋆(T ) such that ϕ⋆◦ ≬S=≬T ◦ϕ, ψ♯ : S⋆ // T ⋆ the underlying

mapping of the canonical extension of ψ to the free monoid T⋆(S) on S

and ψ⋆ the unique monoid homomorphism from T⋆(S) to T⋆(T
⋆) such that

ψ⋆◦ ≬S=≬T ⋆ ◦ψ. More specific notational conventions will be included and

explained in the successive sections.

.2 Many-sorted sets, signatures, algebras, and generalized

terms.

In this section we begin by defining the category MSet, of many-sorted

sets, by applying the Ehresmann-Grothendieck construction (we write it

EG-construction for short) (see [7], pp. 89–91, and [15], pp. (sub.) 175–177)

to a contravariant functor MSet from Set to Cat. Following this we define

the categories Sig, of many-sorted signatures, and Alg, of many-sorted

algebras, by applying also the EG-construction to suitable contravariant

functors Sig from Set to Cat, and Alg from Sig to Cat, respectively.

Besides, we prove that there exists a left adjoint T to a “forgetful” functor

G from Alg to MSet ×Set Sig. On the basis of the functor T we assign

to every many-sorted signature Σ, by applying the construction of Kleisli

(we write it Kl-construction for short), the category Ter(Σ), of generalized

terms for Σ, as the dual of the Kleisli category for TΣ (the standard monad

derived from the adjunction between the category Alg(Σ), of Σ-algebras,

and the category SetS, of S-sorted set), and to every signature morphism

d : Σ // Λ the functor d⋄ : Ter(Σ) // Ter(Λ). In this way we obtain

a pseudo-functor Ter from Sig to the 2-category Cat (where the concept

of pseudo-functor from a category to a 2-category has to be understood

as in [3], pp. 289–290) which formalizes the procedure of translation for

many-sorted terms.

Before stating the first proposition of this section, we agree upon calling,

henceforth, for a set (of sorts) S ∈ U , the objects of the category SetS (i.e.,

the functions A = (As)s∈S from S to U) S-sorted sets; and the morphisms
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of SetS from an S-sorted set A to another B (i.e., the ordered triples

(A, f,B), abbreviated to f : A //B, where f ∈
∏

s∈S Hom(As, Bs)) S-

sorted mappings from A to B.

In the following proposition, that is basic for a great deal of what follows,

for a mapping ϕ from S to T , we prove the existence of an adjunction
∐

ϕ ⊣ ∆ϕ from SetS to SetT , as well as the existence of a contravariant

functor MSet and of a pseudo-functor MSet∐ (related, respectively, to the

right and left components of the adjunction) from Set to Cat.

Proposition 2.1. Let ϕ : S // T be a mapping. Then there are func-

tors ∆ϕ from SetT to SetS and
∐

ϕ from SetS to SetT such that
∐

ϕ⊣∆ϕ.

We write θϕ, ηϕ, and εϕ, respectively, for the natural isomorphism, the

unit, and the counit of the adjunction. Moreover, there exists a contravari-

ant functor MSet from Set to Cat which sends a set S to the category

MSet(S) = SetS, and a mapping ϕ from S to T to the functor ∆ϕ from

SetT to SetS; and a pseudo-functor MSet∐ from Set to the 2-category

Cat given by the following data: its object mapping sends each set S to

the category MSet∐(S) = SetS; its arrow mapping sends each mapping ϕ

from S to T to the functor MSet∐(ϕ) =
∐

ϕ from SetS to SetT ; for every

ϕ : S // T and ψ : T //U , the natural isomorphism γϕ,ψ from
∐

ψ ◦
∐

ϕ

to
∐

ψ◦ϕ is that which is defined, for every S-sorted set A, as the U -sorted

mapping that in the u-th coordinate is ((a, s), ϕ(s)) 7→ (a, s), if there exists

an s ∈ S such that u = ψ(ϕ(s)), and is the identity at ∅, otherwise; for ev-

ery set S, the natural isomorphism νS from IdSetS to
∐

idS
is that which is

defined, for every S-sorted set A and s ∈ S, as the canonical isomorphism

from As to As × {s}.

Proof. Let ∆ϕ be the functor from SetT to SetS defined as fol-

lows: its object mapping sends each T -sorted set A to the S-sorted set

Aϕ = (Aϕ(s))s∈S , i.e., the composite mapping A ◦ ϕ; its arrow mapping

sends each T -sorted mapping f : A //B to the S-sorted mapping fϕ =

(fϕ(s))s∈S : Aϕ //Bϕ. Let
∐

ϕ be the functor from SetS to SetT defined

as follows: its object mapping sends each S-sorted set A to the T -sorted set
∐

ϕA = (
∐

s∈ϕ−1[t]As)t∈T ; its arrow mapping sends each S-sorted mapping

f : A //B to the T -sorted mapping

∐

ϕ

f = (
∐

s∈ϕ−1[t]

fs)t∈T :
∐

ϕ

A //
∐

ϕ

B.
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Then
∐

ϕ is a left adjoint for ∆ϕ since, for every S-sorted set A,
∐

ϕA is

LanϕA, the left Kan extension of A along ϕ.

The proof that MSet∐ is a pseudo-functor follows easily from its defini-

tion and can therefore be left to the reader. �

By applying the EG-construction to MSet we get the category of many-

sorted sets as stated in the following definition.

Definition 2.2. The category MSet, of many-sorted sets and many-

sorted mappings, is given by MSet =
∫ Set

MSet. Therefore MSet has as

objects the pairs (S,A), where S is a set and A an S-sorted set, and as

morphisms from (S,A) to (T,B) the pairs (ϕ, f), where ϕ : S // T and

f : A //Bϕ.

From the definition of MSet it follows, immediately, that the projection

functor πMSet for MSet is a split bifibration, i.e., a split fibration and a

split opfibration. Moreover, from Theorem 1, pp. 247–248, and Theorem

2, pp. 250–251, in [25], it follows that MSet is bicomplete.

Our next goal is to define the category Sig. But before doing that we

agree that, for a set of sorts S in U , Sig(S) denotes the category of S-sorted

signatures and S-sorted signature morphisms, i.e., the category SetS
⋆×S .

Therefore an S-sorted signature is a mapping Σ from S⋆ × S to U which

sends a pair (w, s) in S⋆×S to the set Σw,s of the formal operations of arity

w, sort (or coarity) s, and biarity (w, s); and an S-sorted signature mor-

phism from Σ to Σ′ is an ordered triple (Σ, d,Σ′), written as d : Σ // Σ′,

where d = (dw,s)(w,s)∈S⋆×S is an element of
∏

(w,s)∈S⋆×S Hom(Σw,s,Σ
′
w,s).

Thus, for every (w, s) ∈ S⋆×S, dw,s is a mapping from Σw,s to Σ′
w,s which

sends a formal operation σ in Σw,s to the formal operation dw,s(σ) (d(σ)

for short) in Σ′
w,s. Sometimes we will write σ : w // s to indicate that the

formal operation σ belongs to Σw,s.

Proposition 2.3. There exists a contravariant functor Sig from Set to

Cat. Its object mapping sends each set of sorts S to Sig(S) = Sig(S); its

arrow mapping sends each mapping ϕ from S to T to the functor Sig(ϕ) =

∆ϕ⋆×ϕ from Sig(T ) to Sig(S) which relabels T -sorted signatures into S-

sorted signatures, i.e., Sig(ϕ) assigns to a T -sorted signature Λ the S-

sorted signature Sig(ϕ)(Λ) = Λϕ⋆×ϕ, and assigns to a morphism of T -sorted

signatures d from Λ to Λ′ the morphism of S-sorted signatures Sig(ϕ)(d) =

dϕ⋆×ϕ from Λϕ⋆×ϕ to Λ′
ϕ⋆×ϕ.
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By applying the EG-construction to Sig we get the category of many-

sorted signatures as stated in the following definition.

Definition 2.4. The category Sig, of many-sorted signatures and ma-

ny-sorted signature morphisms, is given by Sig =
∫ Set

Sig. Therefore Sig

has as objects the pairs (S,Σ), where S is a set of sorts and Σ an S-sorted

signature and as many-sorted signature morphisms from (S,Σ) to (T,Λ) the

pairs (ϕ, d), where ϕ : S // T is a morphism in Set while d : Σ // Λϕ⋆×ϕ
is a morphism in Sig(S). The composition of (ϕ, d) : (S,Σ) // (T,Λ) and

(ψ, e) : (T,Λ) // (U,Ω), denoted by (ψ, e) ◦ (ϕ, d), is (ψ ◦ ϕ, eϕ⋆×ϕ ◦ d),

where

eϕ⋆×ϕ : Λϕ⋆×ϕ // (Ωψ⋆×ψ)ϕ⋆×ϕ(= Ω(ψ◦ϕ)⋆×(ψ◦ϕ)).

Henceforth, unless otherwise stated, we will write Σ, Λ, Ω, and Ξ instead

of (S,Σ), (T,Λ), (U,Ω), and (X,Ξ), respectively, and d, e, and h, instead

of (ϕ, d), (ψ, e), and (γ, h), respectively. Furthermore, to shorten terminol-

ogy, we will say signature and signature morphism instead of many-sorted

signature and many-sorted signature morphism, respectively.

Remark. In [16], P.J. Higgins allows the variation of S but holds Σ

fixed, while, in [1], J. Bénabou follows precisely the inverse criterium.

Because Sig can be identified to a subcategory of the category Sigpd,

defined in the fifth section, we refer to that section for examples of signature

morphisms.

From the definition of Sig it follows that the projection functor πSig

from Sig to Set is a split bifibration. Moreover, from Theorem 1, pp. 247–

248, and Theorem 2, pp. 250–251, in [25], it follows that Sig is bicomplete.

Since it will be used afterwards we introduce, for a signature Σ, an S-

sorted set A, an S-sorted mapping f from A to B, and a word w on S, the

following notation and terminology. We write Aw for
∏

i∈|w|Awi , and fw
for the mapping

∏

i∈|w| fwi from Aw to Bw which sends (ai)i∈|w| in Aw to

(fwi(ai))i∈|w| in Bw. Moreover, we let HOS(A) stand for the S⋆×S-sorted

set (Hom(Aw, As))(w,s)∈S⋆×S and we call it the S⋆ × S-sorted set of the

finitary operations on A.

We proceed next to define the category Alg of many-sorted algebras.

But before doing that we agree that, for an arbitrary but fixed signature

Σ, Alg(Σ) denotes the category of Σ-algebras (and Σ-homomorphisms).

By a Σ-algebra is meant a pair A = (A,F ), where A is an S-sorted set
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and F a Σ-algebra structure on A, i.e., a morphism F = (Fw,s)(w,s)∈S⋆×S
in Sig(S) from Σ to HOS(A) (for a pair (w, s) ∈ S⋆ × S and a σ ∈ Σw,s,

to simplify notation we let Fσ stand for Fw,s(σ)). A Σ-homomorphism

from a Σ-algebra A to another B = (B,G), is a triple (A, f,B), written as

f : A // B, where f is an S-sorted mapping from A to B that preserves the

structure in the sense that, for every (w, s) in S⋆× S, every σ in Σw,s, and

every (ai)i∈|w| in Aw, it happens that fs(Fσ((ai)i∈|w|)) = Gσ(fw((ai)i∈|w|)).

Proposition 2.5. There exists a contravariant functor Alg from Sig to

Cat. Its object mapping sends each signature Σ to Alg(Σ) = Alg(Σ), the

category of Σ-algebras; its arrow mapping sends each signature morphism

d : Σ // Λ to the functor Alg(d) = d∗ : Alg(Λ) // Alg(Σ) defined as

follows: its object mapping sends each Λ-algebra B = (B,G) to the Σ-

algebra d∗(B) = (Bϕ, G
d), where Gd is the composition of the S⋆×S-sorted

mappings d from Σ to Λϕ⋆×ϕ and Gϕ⋆×ϕ from Λϕ⋆×ϕ to HOT (B)ϕ⋆×ϕ (for

σ ∈ Σw,s, to shorten notation, we let Gd(σ) stand for the value of Gd at

σ); its arrow mapping sends each Λ-homomorphism f from B to B′ to the

Σ-homomorphism d∗(f) = fϕ from d∗(B) to d∗(B′).

Proof. For every Λ-algebra B = (B,G) it is the case that G is a

morphism from Λ to HOT (B). Then, by composing d and Gϕ⋆×ϕ, and

taking into account that HOT (B)ϕ⋆×ϕ = HOS(Bϕ), we infer that Gd =

Gϕ⋆×ϕ ◦ d is a Σ-algebra structure on the S-sorted set Bϕ. On the other

hand, for every (w, s) in S⋆ × S and every σ ∈ Σw,s, it happens that

d(σ) ∈ Λϕ⋆(w),ϕ(s). Thus, f being a Λ-homomorphism from (B,G) to

(B′, G′), we infer that fϕ(s)◦Gd(σ) = G′
d(σ)◦fϕ⋆(w). Hence, since Gd

σ = Gd(σ)

and G′
σ
d = G′

d(σ), we have that (fϕ)s ◦G
d
σ = G′

σ
d ◦ (fϕ)w. Therefore fϕ is a

Σ-homomorphism from (Bϕ, G
d) to (B′

ϕ, G
′d).

Just because identities and composites are, obviously, preserved by d∗,

it follows that d∗ is a functor from Alg(Λ) to Alg(Σ). �

By applying the EG-construction to Alg we get the category of many-

sorted algebras as stated in the following definition.

Definition 2.6. The category Alg, of many-sorted algebras and many-

sorted algebra homomorphisms, is given by Alg =
∫ Sig

Alg. Therefore the

category Alg has as objects the pairs (Σ,A), where Σ is a signature and

A a Σ-algebra, and as morphisms from (Σ,A) to (Λ,B), the pairs (d, f),
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with d a signature morphism from Σ to Λ and f a Σ-homomorphism from

A to d∗(B). Henceforth, to shorten terminology, we will say algebra and

algebra homomorphism, or, simply, homomorphism, instead of many-sorted

algebra and many-sorted algebra homomorphism, respectively.

Because Alg can be identified to a subcategory of the category Algpd,

defined in the fifth section, we refer to that section for examples of homo-

morphisms between algebras.

From the definition of Alg it follows that the projection functor πAlg

from Alg to Sig is a fibration.

Proposition 2.7. The category Alg is a concrete and univocally trans-

portable category.

Proof. It is enough to specify a functor from Alg to a convenient

category of sorted sets labelled by signatures. Let GMSet be the forget-

ful functor from Alg to MSet (that is not a fibration), and (MSet ×Set

Sig, (P0,P1)) the pullback of the projection functors πMSet : MSet // Set

and πSig : Sig // Set. Then we have that the structural functors P0 and

P1 are fibrations, and that the unique functor G from Alg to MSet×SetSig

such that P0◦G = GMSet and P1◦G = πAlg makes the category Alg a con-

crete and univocally transportable category on the category MSet×SetSig.

�

Before we prove the existence of a left adjoint T to

G: Alg // MSet ×Set Sig,

we agree on the following notation and terminology. For a signature Σ

in Sig, the functor TΣ from SetS to Alg(Σ) is the left adjoint to the

forgetful functor GΣ from Alg(Σ) to SetS . For a signature Σ and an S-

sorted set of variables X, TΣ(X) is the free (also called the term or word)

Σ-algebra on X, and ηX is the insertion (of the generators) X into TΣ(X),

the underlying S-sorted set of TΣ(X). For a Σ-algebra A and a valuation

f of the S-sorted set of variables X in A, i.e., an S-sorted mapping f from

X to A, we will denote by f ♯ the canonical extension of f to TΣ(X), i.e.,

the unique Σ-homomorphism from TΣ(X) to A such that f ♯ ◦ ηX = f .

For an S-sorted mapping f from X to Y , we will denote by f@ the unique

Σ-homomorphism from TΣ(X) to TΣ(Y ) such that f@ ◦ ηX = ηY ◦ f , i.e.,



48 JUAN CLIMENT VIDAL AND JUAN SOLIVERES TUR

the value of the functor TΣ at f . Therefore f@ is also (ηY ◦ f)♯. Moreover,

transposing to the many-sorted case the terminology coined for the single-

sorted case, we call, for s ∈ S, the elements of TΣ(X)s, many-sorted terms

for Σ of type (X, s), henceforth abbreviated to terms for Σ of type (X, s),

or, simply, to terms of type (X, s).

Proposition 2.8. There exists a functor T : MSet ×Set Sig // Alg

left adjoint to the functor G: Alg // MSet ×Set Sig.

Proof. The functor T from MSet ×Set Sig to Alg given on objects

(S,Σ,X) by T(S,Σ,X) = (Σ,TΣ(X)) and on arrows

(ϕ, d, f) : (S,Σ,X) // (T,Λ, Y )

as

T(ϕ, d, f) = (d, fd) : (Σ,TΣ(X)) // (Λ,TΛ(Y )),

where fd = ((ηY )ϕ ◦f)♯ is the canonical extension of the S-sorted mapping

(ηY )ϕ ◦ f from X to TΛ(Y )ϕ to the free Σ-algebra on X, is a left adjoint

for G. �

For a morphism (ϕ, d, f) : (S,Σ,X) // (T,Λ, Y ) in MSet ×Set Sig,

the functor T acting on (ϕ, d, f) allows us to get the Σ-homomorphism

fd from TΣ(X) to TΛ(Y )ϕ. Hence, for each s ∈ S, fd
s translates terms

for Σ of type (X, s) into terms for Λ of type (Y,ϕ(s)). In particular,

the unit ηϕ of
∐

ϕ ⊣ ∆ϕ provides, for every S-sorted set X, the S-sorted

mapping ηϕX : X // (
∐

ϕX)ϕ and if d is a morphism from Σ to Λ, then

(ϕ, d, ηϕX ) : (S,Σ,X) // (T,Λ,
∐

ϕX) is a morphism in MSet ×Set Sig.

Hence the functor T acting on (ϕ, d, ηϕX ) determines the morphism (d, ηdX )

from (Σ,TΣ(X)) to (Λ,TΛ(
∐

ϕX)), where ηdX = ((η‘

ϕX
)ϕ ◦ ηϕX)♯ is

the Σ-homomorphism from TΣ(X) to TΛ(
∐

ϕX)ϕ that extends the S-

sorted mapping (η‘

ϕX
)ϕ ◦ η

ϕ
X from X to TΛ(

∐

ϕX)ϕ. Therefore, for each

s ∈ S, ηdX,s translates terms for Σ of type (X, s) into terms for Λ of type

(
∐

ϕX,ϕ(s)). The Σ-homomorphisms ηdX , as stated in the following propo-

sition, are in fact the components of a natural transformation, and this

contributes to explain their relevance as translators.

Proposition 2.9. Let d be a morphism of signatures from Σ to Λ.

Then the family ηd = (ηdX)X∈U , which to an S-sorted set X assigns the
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Σ-homomorphism ηdX from TΣ(X) to TΛ(
∐

ϕX)ϕ, is a natural transfor-

mation from TΣ to d∗ ◦ TΛ ◦
∐

ϕ. Therefore, for the forgetful functor GΣ

from Alg(Σ) to SetS, GΣ ∗ ηd, i.e., the horizontal composition of the nat-

ural transformations ηd and idGΣ
, also denoted, for simplicity, by ηd, is a

natural transformation from TΣ = GΣ ◦ TΣ to ∆ϕ ◦ TΛ ◦
∐

ϕ, taking into

account that GΣ ◦ d∗ = ∆ϕ ◦ GΛ and TΛ = GΛ ◦TΛ.

The category Alg is bicomplete. This follows from Theorem 1, pp.

247–248, and Theorem 2, pp. 250–251, in [25], taking into account that,

for every signature morphism d : Σ // Λ, the functor d∗, defined in Propo-

sition 2.5 has a left adjoint d∗.

Since it will be used afterwards we recall next, for a Σ-algebra A and an

S-sorted set X, the concepts of many-sorted X-ary operation on A and of

many-sorted X-ary term operation on A, and the procedure of realization

of terms P of type (X, s) as term operations PA on A.

Definition 2.10. Let X be an S-sorted set, A a Σ-algebra, s a sort

in S and P ∈ TΣ(X)s a term for Σ of type (X, s). Then the Σ-algebra

of the many-sorted X-ary operations on A, OX(A), is AAX , i.e., the di-

rect AX-power of A, where AX is Hom(X,A), the (ordinary) set of the

S-sorted mappings from X to A. For abbreviation we let X-ary operations

on A stand for many-sorted X-ary operations on A. The Σ-algebra of the

many-sorted X-ary term operations on A, TerX(A), is the subalgebra of

OX(A) generated by PA
X = (PA

X,s)s∈S = ({prAX,s,x | x ∈ Xs })s∈S , the sub-

family of OX(A) = AAX , where, for every s ∈ S and every x ∈ Xs, prAX,s,x
is the mapping from AX to As which sends a ∈ AX to as(x). For abbre-

viation we let X-ary term operations on A stand for many-sorted X-ary

term operations on A. We denote by TrX,A the unique Σ-homomorphism

from TΣ(X) to OX(A) such that prAX = TrX,A ◦ ηX , where prAX is the

S-sorted mapping (prAX,s)s∈S from X to OX(A) whose s-th coordinate, for

each s ∈ S, is prAX,s = (prAX,s,x)x∈Xs . For abbreviation, we let PA stand

for the image of P under TrX,As , and we call the mapping PA from AX
to As, the term operation on A determined by P , or the term realization

of P on A. For simplicity of notation, we continue to write TrX,A for the

co-restriction of the Σ-homomorphism TrX,A : TΣ(X) // OX(A) to the

subalgebra TerX(A) of OX(A).

As it is well-known, for a signature Σ, the conglomerate of terms for Σ

is precisely the set
⋃

X∈U

⋃

s∈S TΣ(X)s, but such an amorphous set is not



50 JUAN CLIMENT VIDAL AND JUAN SOLIVERES TUR

adequate, because of its lack of structure, for some tasks, as e.g., to explain

the invariant character of the realization of terms as term operations on

algebras, under change of signature (or to state a Completeness Theorem

for finitary many-sorted equational logic).

However, by conveniently generalizing the concept of term for a sig-

nature Σ (as explained immediately below), it is possible to endow, in a

natural way, to the corresponding generalized terms for Σ, taken as mor-

phisms, with a category structure, that enables us to give a categorical

explanation of the existing relation between terms and algebras. To this

we add that the use of the generalized terms and related notions, such

as, e.g., that of generalized equation (to be defined in the following sec-

tion), has allowed us, in [4], to provide a purely categorical proof of the

Completeness Theorem for monads in categories of sorted sets.

Actually, we associate to every signature Σ the category Kl(TΣ)op, of

generalized terms for Σ, that we denote, to shorten notation, by Ter(Σ),

i.e., the dual of the Kleisli category for TΣ = (TΣ, η, µ), the standard

monad derived from the adjunction TΣ ⊣ GΣ between Alg(Σ) and SetS ,

with TΣ = GΣ ◦ TΣ.

The construction of the category Ter(Σ) is a natural one. This is so,

essentially, because it has been obtained by applying a category-theoretic

construction, specifically the Kl-construction (defined by Kleisli in [18]).

However, to understand more plainly how the category Ter(Σ) is obtained,

or, more precisely, from where the morphisms of Ter(Σ) arise, the following

observation could be helpful. For a signature Σ, an S-sorted set X, and a

sort s ∈ S, an ordinary term P ∈ TΣ(X)s for Σ of type (X, s) is, essentially,

an S-sorted mapping P : δs // TΣ(X) where, for s ∈ S, δs = (δst )t∈S , the

Kronecker delta at s, is the S-sorted set such that δst = ∅ if s 6= t and

δss = 1. But the just mentioned S-sorted mappings do not constitute the

morphisms of a category. Therefore, in order to get a category, it seems

natural to replace the special S-sorted sets that are the Kronecker deltas,

as domains of morphisms, by arbitrary S-sorted sets, thus obtaining the

generalized terms, that are the categorical rendering of the ordinary terms,

since they are now S-sorted mappings from an S-sorted set to the free

Σ-algebra on another S-sorted set, i.e., morphisms in a category Ter(Σ).

This category-theoretic perspective about terms, in its turn, will allow

us to get a functor TrΣ, of realization of terms as term operations, from

Alg(Σ)×Ter(Σ) to Set, and therefore to define (in the next section) the
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validation of equations, understood as ordered pairs of coterminal terms in

the corresponding generalized sense, in an algebra.

Since it will be used afterwards we provide, for a signature Σ, the full

definition of Ter(Σ) and also the explicit definition of the procedure of

realization of the terms for Σ as term operations on a given Σ-algebra.

Observe that we depart, in the definition of the category Ter(Σ), but only

for this type of category, from the (non-Ehresmannian) tradition, in calling

a category by the name of its morphisms.

Definition 2.11. Let Σ be a signature and A a Σ-algebra. Then

Ter(Σ), the category of generalized terms for Σ, is the dual of Kl(TΣ): the

objects are the elements of U
S; the morphisms from an S-sorted set X to

another Y , which we call generalized terms for Σ of type (X,Y ), or, simply,

terms of type (X,Y ), are the S-sorted mappings P from Y to TΣ(X); the

composition, denoted in Ter(Σ) and Kl(TΣ) by ⋄, is the operation which

sends P : X // Y andQ : Y //Z in Ter(Σ) toQ⋄P : X //Z in Ter(Σ),

where Q ⋄ P is µX ◦ P@ ◦Q, with µX the value at X of the multiplication

µ of the monad TΣ and P@ the value of the functor TΣ at the S-sorted

mapping P : Y // TΣ(X); and the identities are the values of η, the unit

of the monad TΣ, at the S-sorted sets.

If P : X // Y is a term for Σ of type (X,Y ), then PA, the term op-

eration on A determined by P , or the term realization of P on A, is the

mapping from AX to AY which assigns to a valuation f of the variables X

in A the valuation f ♯ ◦ P of the variables Y in A.

We proceed next to assign to every signature morphism d : Σ // Λ the

corresponding functor d⋄ from Ter(Σ) to Ter(Λ).

Proposition 2.12. Let d : Σ // Λ be a signature morphism. Then

there exists a functor d⋄ from Ter(Σ) to Ter(Λ). Its object mapping as-

signs to each S-sorted set X the T -sorted set d⋄(X) =
∐

ϕX; its morphism

mapping assigns to each morphism P from X to Y in Ter(Σ) the morphism

d⋄(P ) = (θϕ)−1(ηdX ◦ P ) from
∐

ϕX to
∐

ϕ Y in Ter(Λ), where ηdX is the

Σ-homomorphism from TΣ(X) to TΛ(
∐

ϕX)ϕ that extends the S-sorted

mapping (η‘

ϕX
)ϕ ◦ ηϕX from X to TΛ(

∐

ϕX)ϕ.

Corollary 2.13. The mappings that associate, respectively, to a signa-

ture Σ the category Ter(Σ), and to a signature morphism d from Σ to Λ
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the functor d⋄ from Ter(Σ) to Ter(Λ), are the components of a pseudo-

functor Ter from Sig to the 2-category Cat.

We state now for the generalized terms the invariant character under

signature change of the realization of terms as term operations in arbitrary,

but fixed, algebras. We notice that from this fact we will get, in the third

section, the invariance of the relation of satisfaction under signature change.

Proposition 2.14. Let d : Σ // Λ be a signature morphism. Then,

for each Λ-algebra A and term P for Σ of type (X,Y ), the mappings

Pd∗(A) ◦ θϕX,A and θϕY,A ◦ d⋄(P )A from A‘

ϕX
to (Aϕ)Y are identical.

In the following proposition we assign to a signature Σ and a Σ-algebra

A a functor TrΣ,A from Ter(Σ) to Set. From the definition of the object

and morphism mappings of the functors of the type TrΣ,A, we see that they

encapsulate the procedure of realization of terms. And, from the fact that

they preserve identities and compositions in Ter(Σ), we conclude that they

formally represent the two basic intuitions about the behavior of the just

named procedure, i.e., that the realization of an identity term is an identity

term operation, and that the realization of a composite of two terms is the

composite of their respective realizations (in the same order).

Proposition 2.15. Let Σ be a signature and A a Σ-algebra. Then

there exists a functor TrΣ,A from Ter(Σ) to Set which sends an S-sorted

set X to the set TrΣ,A(X) = AX and a term P : X // Y to TrΣ,A(P ) =

PA : AX //AY , the term operation on A determined by P .

Since it will be used afterwards we recall that, for an S-sorted mapping

f from an S-sorted set A to another B and an S-sorted set X, fX is the

value at X of the natural transformation H(·, f) from the contravariant

functor H(·, A) to the contravariant functor H(·, B), both from (SetS)op to

Set.

Proposition 2.16. Let Σ be a signature and f a Σ-homomorphism

from A to B. Then there exists a natural transformation TrΣ,f from the

functor TrΣ,A to the functor TrΣ,B which sends an S-sorted set X to the

mapping TrΣ,fX = fX from AX to BX . Moreover, TrΣ,idA = idTrΣ,A , and,

for another Σ-homomorphism g : B // C, TrΣ,g◦f = TrΣ,g ◦ TrΣ,f .
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Therefore, the naturalness of the procedure of realization of terms as

term operations on the different algebras is embodied in the natural trans-

formations of the type TrΣ,f .

Corollary 2.17. Let Σ be a signature. Then the family of functors

(TrΣ,A)A∈Alg(Σ) together with the family of natural transformations

(TrΣ,f )f∈Mor(Alg(Σ)) are the object and morphism mappings, respectively,

of a functor TrΣ,(·) from Alg(Σ) to SetTer(Σ), or, what is equivalent,

by the Schönfinkel-Curry fundamental transformation law, of a functor

TrΣ from Alg(Σ) × Ter(Σ) to Set (which formalizes the realization of

terms as term operations on algebras, but taking into account the varia-

tion of the algebras through the homomorphisms between them). Moreover,

for a signature morphism d : Σ // Λ, there exists a natural isomorphism

θd from TrΛ ◦ (IdAlg(Λ) × d⋄) to TrΣ ◦ (d∗ × IdTer(Σ)), where, for every

(A,X) ∈ Alg(Λ) × Ter(Σ), θdA,X is precisely θϕX,A, i.e., the natural iso-

morphism of the adjunction
∐

ϕ ⊣ ∆ϕ, and this fact shows the invariant

character of the procedure of realization of terms under signature change.

.3 Many-sorted specifications and morphisms.

In this section we begin by defining, for a signature Σ, the concept of Σ-

equation, but for the generalized terms defined in the preceding section,

the binary relation of satisfaction between Σ-algebras and Σ-equations,

and the semantical consequence operators CnΣ. Then, after extending

the translation of generalized terms to generalized equations, we prove the

corresponding satisfaction condition.

After this we define, for the generalized terms, the concepts of many-

sorted specification and of many-sorted specification morphism, from which

we get the corresponding category, denoted by Spf . We notice that, conve-

niently generalized, the many-sorted specification morphisms will be used,

together with some other concepts, in the last section of this article, to

prove the equivalence between the many-sorted specifications of Hall and

Bénabou.

We now define the equations over a given signature through the mor-

phisms of the category of terms for the signature, what it means for an

equation to be valid in an algebra, and the consequence operator on the
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many-sorted set of the equations.

Definition 3.1. Let Σ be a signature, X, Y two S-sorted sets and A

a Σ-algebra. Then a Σ-equation of type (X,Y ) is a pair (P,Q) : X // Y

of parallel morphisms in Ter(Σ) (hence (P,Q) ∈ Hom(Y,TΣ(X))2), and

a Σ-equation is a Σ-equation of type (X,Y ) for some S-sorted sets X,

Y . We will denote by Eq(Σ) the (US)2-sorted set of all Σ-equations. A

Σ-equation (P,Q) : X // Y is valid in A, denoted by A |=Σ
X,Y (P,Q),

if and only if, for every s ∈ S and y ∈ Ys, A |=Σ
X,s (Ps(y), Qs(y)), i.e.,

(Ps(y))
A = (Qs(y))

A. We extend this satisfaction relation between Σ-

algebras A and Σ-equations (P,Q) : X // Y to Σ-algebras A and families

E ⊆ Eq(Σ) by agreeing that A |=Σ E if and only if, for every X,Y ∈ U
S

and (P,Q) ∈ EX,Y , we have that A |=Σ
X,Y (P,Q). We will denote by CnΣ

the endomapping of Sub(Eq(Σ)), the set of all sub-(US)2-sorted sets of

Eq(Σ), which sends E ⊆ Eq(Σ) to CnΣ(E), where, for every X,Y ∈ U
S and

(P,Q) ∈ Eq(Σ)X,Y , (P,Q) ∈ CnΣ(E)X,Y if and only if, for every Σ-algebra

A, if A |=Σ E , then A |=Σ
X,Y (P,Q). We call CnΣ(E) the (US)2-sorted set

of the semantical consequences of E .

If we keep in mind that for a term P : X // Y for Σ of type (X,Y ),

PA, the term operation on A determined by P , is the mapping from AX
to AY which assigns to an S-sorted mapping f : X //A precisely f ♯ ◦

P : Y //A, then we get the following convenient characterization of the

relation A |=Σ
X,Y (P,Q):

A |=Σ
X,Y (P,Q) if and only if PA = QA.

Besides, by the Completeness Theorem in [4], for E ⊆ Eq(Σ), we have that

CnΣ(E) is precisely CgΠ
Ter(Σ)(E), i.e., the smallest Π-compatible congru-

ence on Ter(Σ) that contains E , where the superscript Π in the operator

CgΠ
Ter(Σ) abbreviates “product”. Therefore the operator CnΣ on Eq(Σ) is

a closure operator.

Next we formalize the procedure of translation, by means of a signature

morphism, of equations for a signature into equations for another signature

in the following definition.

Definition 3.2. Let d be a signature morphism from Σ to Λ. Then d

induces a many-sorted mapping

((
∐

ϕ)2,d2
⋄) : ((US)2,Eq(Σ)) // ((UT )2,Eq(Λ)),
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the so-called translation of equations for Σ into equations for Λ relative to

d, where (
∐

ϕ)2 is the mapping from (US)2 to (UT )2 which sends a pair of

S-sorted sets (X,Y ) to the pair (
∐

ϕX,
∐

ϕ Y ) of T -sorted sets, and d2
⋄ the

(US)2-sorted mapping which to a Σ-equation (P,Q) of type (X,Y ) assigns

the Λ-equation (d⋄(P ),d⋄(Q)) of type (
∐

ϕX,
∐

ϕ Y ).

In the following lemma we prove the invariance of the relation of satis-

faction under signature change, also known, for those following the termi-

nology coined by Goguen and Burstall in [11], p. 229, as the satisfaction

condition.

Lemma 3.3. Let d : Σ // Λ be a signature morphism, (P,Q) a Σ-

equation of type (X,Y ) and A a Λ-algebra. Then we have that

d∗(A) |=Σ
X,Y (P,Q) if and only if A |=Λ

‘

ϕX,
‘

ϕY
(d⋄(P ),d⋄(Q)).

Proof. The condition d∗(A) |=Σ
X,Y (P,Q) is equivalent to Pd∗(A) =

Qd∗(A). But this condition is equivalent to d⋄(P )A = d⋄(Q)A. Therefore

it is also equivalent to the condition A |=Λ
‘

ϕX,
‘

ϕY
(d⋄(P ),d⋄(Q)). �

Following this we proceed to define the concept of many-sorted spec-

ification (also known as many-sorted pretheory) and that of many-sorted

specification morphism.

Definition 3.4. A many-sorted specification (or many-sorted prethe-

ory) is a pair (Σ, E), where Σ is a signature while E ⊆ Eq(Σ). A many-

sorted specification morphism (or many-sorted pretheory morphism) from

(Σ, E) to (Λ,H) is a signature morphism d : Σ // Λ such that d2
⋄[E ] ⊆

CnΛ(H). For abbreviation we let specification and specification morphism

stand for many-sorted specification and many-sorted specification morphism,

respectively. Besides, if in a specification (Σ, E) the set E of equations is

closed, i.e., CnΣ(E) = E , then we call (Σ, E) a (many-sorted) theory. To

shorten notation, we write, sometimes, E instead of CnΣ(E).

Proposition 3.5. The specifications and the specification morphisms

determine a category denoted as Spf .

What we want now is to lift the contravariant functor Alg from Sig

to Cat to Spf , by assigning, in particular, to a specification (Σ, E) the

category Alg(Σ, E) of its models.
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Proposition 3.6. There exists a contravariant functor Algsp from Spf

to Cat; its object mapping sends each specification (Σ, E) to the category

Algsp(Σ, E) = Alg(Σ, E) of its models, i.e., the full subcategory of Alg(Σ)

determined by those Σ-algebras which satisfy all the equations in E; its

arrow mapping sends each specification morphism d from (Σ, E) to (Λ,H)

to the functor Algsp(d) = d∗ from Alg(Λ,H) to Alg(Σ, E), obtained from

the functor d∗ from Alg(Λ) to Alg(Σ) by bi-restriction.

Proof. Let B be a Λ-algebra such that B |=Λ H. Then B |=Λ CnΛ(H),

therefore B |=Λ d2
⋄[E ] hence, by Lemma 3.3, d∗(B) |=Σ E . �

By applying the EG-construction to Algsp we get the category
∫ Spf

Algsp

denoted by Algsp. The category Algsp has as objects the pairs ((Σ, E),A),

where (Σ, E) is a specification and A a Σ-algebra which is a model of E ,

and as morphisms from ((Σ, E),A) to ((Λ,H),B), the pairs (d, f), with d

a specification morphism from (Σ, E) to (Λ,H) and f a Σ-homomorphism

from A to d∗(B).

On the other hand, taking care of the Completeness Theorem in [4], ev-

ery family of equations E ⊆ Eq(Σ) determines a congruence on the category

Ter(Σ), hence a quotient category Ter(Σ)/E . Besides, this procedure can

be completed, as stated in the following proposition, to a pseudo-functor

Tersp from Spf to Cat, and the restriction of Tersp to Sig is precisely the

pseudo-functor Ter.

Proposition 3.7. There exists a pseudo-functor Tersp from Spf to Cat

defined as follows

1. Tersp sends a specification (Σ, E) to the category Tersp(Σ, E) =

Ter(Σ, E), where Ter(Σ, E) is the quotient category Ter(Σ)/E .

2. Tersp sends a specification morphism d from (Σ, E) to (Λ,H) to the

functor Tersp(d), also occasionally denoted by d⋄, from Ter(Σ, E) =

Ter(Σ)/E to Ter(Λ,H) = Ter(Λ)/H, which assigns to a morphism

[P ]E : X // Y in Ter(Σ, E) the morphism

Tersp(d)([P ]E ) = [d⋄(P )]H :
∐

ϕX
//
∐

ϕY

in Ter(Λ,H).
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To finalize this section we notice that, for each specification (Σ, E),

there exists a functor Trsp,(Σ,E) from Alg(Σ, E) × Ter(Σ, E) to Set. On

the other hand, for each specification morphism d : (Σ, E) // (Λ,H), there

exists a natural isomorphism θsp,d from Trsp,(Λ,H) ◦ (IdAlg(Λ,H) × d⋄) to

Trsp,(Σ,E) ◦ (d∗ × IdTer(Σ,E)). Moreover, from the category Spfop × Spf to

the 2-category Cat there is a pseudo-functor Algsp(·)×Tersp(·) and the pair

(Trsp, θsp), where Trsp is (Trsp,(Σ,E))(Σ,E)∈Spf and θsp is (θsp,d)d∈Mor(Spf) is

a pseudo-extranatural transformation from Algsp(·) × Tersp(·) to KSet.

.4 Hall and Bénabou algebras.

The concept of many-sorted clone, that generalizes both that of single-

sorted clone axiomatized by P. Hall as a single-sorted partial algebra sub-

ject to satisfy some laws (see e.g., [6], pp. 127 and 132) and by M. Lazard

as a compositor (see [20], p. 327), and that of Boolean clone investigated,

among others, by E. Post (see e.g., [23] and [24]), was axiomatically defined

by Goguen and Meseguer (in [12], pp. 318–319) as any many-sorted algebra

(of the appropriate signature) that satisfies a system of many-sorted equa-

tional laws. The corresponding categories of many-sorted algebras, called

categories of Hall algebras, are the algebraic rendering of the categories

of finitary many-sorted algebraic theories of Bénabou, i.e., both types of

categories, as it is well-known, are equivalent.

Our main aim in this section is to define, for each set of sorts, through

a system of many-sorted equational laws the, so-called, Bénabou algebras

as those many-sorted algebras that satisfy them, and to state that the

corresponding category of Bénabou algebras, for a given set of sorts, is

isomorphic to the category of finitary many-sorted algebraic theories of

Bénabou, for the same set of sorts. Besides, we state that the Hall and

Bénabou algebras, even having different specification, are models of the

essential properties of the clones for the many-sorted operations, i.e., that

the respective categories of Hall and Bénabou algebras are equivalent.

The homomorphisms between Bénabou algebras, as we will show later

on (in the fifth section), are also adequate to define the composition of the

morphisms of Fujiwara between signatures, that are a strict generalization

of both the standard morphisms and the derivors (defined in the fifth sec-

tion) between signatures. Informally, we can say that the Bénabou algebras
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are to the composition of morphisms of Fujiwara between signatures as the

Hall algebras are to the composition of derivors between signatures.

Before we define the Hall algebras as the models of a specification, we

agree that for a set of sorts U , a word x ∈ U⋆ and a standard U -sorted

set of variables V U = ({ vun | n ∈ N })u∈U , ↓x is the U -sorted subset of V U

defined, for every u ∈ U as (↓x)u = { vui | i ∈ x−1[u] }, this will apply, in

particular, when U = S⋆ × S or U = S⋆ × S⋆.

Definition 4.1. Let S be a set of sorts and V HS the S⋆ × S-sorted set

of variables (Vw,s)(w,s)∈S⋆×S where, for every (w, s) ∈ S⋆×S, Vw,s = { vw,sn |

n ∈ N }. A Hall algebra for S is a HS = (S⋆ × S,ΣHS , EHS )-algebra, where

ΣHS is the S⋆ × S-sorted signature, i.e., the (S⋆ × S)⋆ × (S⋆ × S)-sorted

set, defined as follows:

HS1. For every w ∈ S⋆ and i ∈ |w|, πwi : λ // (w,wi), where |w| is the

length of the word w and λ the empty word in (S⋆ × S)⋆.

HS2. For every u, w ∈ S⋆ and s ∈ S,

ξu,w,s : ((w, s), (u,w0), . . . , (u,w|w|−1)) // (u, s);

while EHS is the many-sorted subset of Eq(ΣHS) defined as follows:

H1. Projection. For every u, w ∈ S⋆ and i ∈ |w|, the equation

ξu,w,wi(π
w
i , v

u,w0
0 , . . . , v

u,w|w|−1

|w|−1 ) = vu,wii

of type (((u,w0), . . . , (u,w|w|−1)), (u,wi)).

H2. Identity. For every u ∈ S⋆ and j ∈ |u|, the equation

ξu,u,uj(v
u,uj
j , πu0 , . . . , π

u
|u|−1) = v

u,uj
j

of type (((u, uj)), (u, uj)).

H3. Associativity. For every u, v, w ∈ S⋆ and s ∈ S, the equation

ξu,v,s(ξv,w,s(v
w,s
0 , vv,w0

1 , . . . , v
v,w|w|−1

|w| ), vu,v0|w|+1, . . . , v
u,v|v|−1

|w|+|v| ) =

ξu,w,s(v
w,s
0 ,ξu,v,w0(v

v,w0
1 , vu,v0|w|+1, . . . , v

u,v|v|−1

|w|+|v| ), . . . ,

ξu,v,w|w|−1
(v
v,w|w|−1

|w| , vu,v0|w|+1, . . . , v
u,v|v|−1

|w|+|v| ))

of type (((w, s), (v,w0), . . . , (v,w|w|−1), (u, v0), . . . , (u, v|v|−1)), (u, s)).
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We call the formal constants πwi projections, and the formal operations

ξu,w,s substitution operators. Furthermore, we denote by Alg(HS) the cat-

egory of Hall algebras for S and homomorphisms between Hall algebras.

Since Alg(HS) is a variety, the forgetful functor GHS from Alg(HS) to

SetS
⋆×S has a left adjoint THS which assigns to an S⋆×S-sorted set Σ the

corresponding free Hall algebra THS (Σ).

For every S-sorted set A, HOS(A) = (Hom(Aw, As))(w,s)∈S⋆×S , the

S⋆ × S-sorted set of operation for A, is naturally endowed with a Hall al-

gebra structure if we realize the projections as the true projections and the

substitution operators as the generalized composition of mappings (see [5],

Proposition 2.8, pp. 134–135, for more details). Let us denote by HOS(A)

the corresponding ΣHS -algebra.

Remark. The closed sets of the Hall algebra HOS(A) for (S,A) are

precisely the clones of (many-sorted) operations on the S-sorted set A.

For every S-sorted signature Σ, HTS(Σ) = (TΣ(↓w)s)(w,s)∈S⋆×S is also

endowed with a Hall algebra structure that formalizes the concept of sub-

stitution (see [5], Proposition 2.9, pp. 135–136, for more details). Let us

denote by HTS(Σ) the corresponding ΣHS -algebra.

Our next goal is to state that, for every S⋆ × S-sorted set Σ, THS(Σ),

the free Hall algebra on Σ, is isomorphic to HTS(Σ). We remark that the

existence of this isomorphism is interesting because it enables us, on the

one hand, to get a more tractable description of the terms in THS(Σ), and,

on the other hand, to give, in the fifth section, an alternative, but equiva-

lent, definition of the concept of derivor (defined by Goguen, Thatcher and

Wagner in [13], p. 86) between signatures.

Proposition 4.2. Let Σ be an S-sorted signature, i.e., an S⋆×S-sorted

set. Then the Hall algebra HTS(Σ) is isomorphic to THS(Σ).

Proof. See [5]. �

For a set of sorts S, the fundamental objects in the approach to the

many-sorted completeness theorem in [12], i.e., the Hall algebras for S,

have an alternative, but equivalent, description in terms of, what we call,

Bénabou algebras for S, that, as we will show below are more strongly

linked to the finitary many-sorted theories algebraic theories than are the
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Hall algebras. Besides, the Bénabou algebras will be shown to be more

adequate in order to work with morphisms between signatures more general

than the standard ones. Actually there exists an equivalence between the

category Alg(HS), of Hall algebras for S, and the category Alg(BS), of

Bénabou algebras for S, i.e., the category defined as follows.

Definition 4.3. Let S be a set of sorts and V BS the (S⋆)2-sorted set of

variables (Vu,w)(u,w)∈(S⋆)2 where, for every (u,w) ∈ (S⋆)2, Vu,w = { vu,wn |

n ∈ N }. A Bénabou algebra for S is a BS = ((S⋆)2,ΣBS , EBS )-algebra,

where ΣBS is the (S⋆)2-sorted signature defined as follows:

BS1. For the empty word λ ∈ S⋆, every w ∈ S⋆ and i ∈ |w|, where |w|

is the domain of the word w, the formal operation of projection:

πwi : λ // (w, (wi)).

BS2. For every u, w ∈ S⋆, the formal operation of finite tupling :

〈 〉u,w : ((u, (w0)), . . . , (u, (w|w|−1))) // (u,w).

BS3. For every u, x, w ∈ S⋆, the formal operation of substitution:

◦u,x,w : ((u, x), (x,w)) // (u,w);

while EBS is the many-sorted subset of Eq(ΣBS) defined as follows:

B1. For every u, w ∈ S⋆ and i ∈ |w|, the equation:

πwi ◦u,w,(wi) 〈v
u,(w0)
0 , . . . , v

u,(w|w|−1)

|w|−1 〉u,w = v
u,(wi)
i ,

of type (((u, (w0)), . . . , (u, (w|w|−1))), (u, (wi))).

B2. For every u, w ∈ S⋆, the equation:

vu,w0 ◦u,u,w 〈πu0 , . . . , π
u
|u|−1〉u,u = vu,w0 ,

of type (((u,w)), (u,w)).

B3. For every u, w ∈ S⋆, the equation:

〈πw0 ◦u,w,w0 v
u,w
0 , . . . , πw|w|−1 ◦u,w,w|w|−1

vu,w0 〉u,w = vu,w0 ,

of type (((u,w)), (u,w)).
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B4. For every w ∈ S⋆, the equation:

〈πw0 〉w,(w0) = πw0 ,

of type (((w, (w0))), (w, (w0))).

B5. For every u, x, w, y ∈ S⋆, the equation:

vw,y0 ◦u,w,y (vx,w1 ◦u,x,w v
u,x
2 ) = (vw,y0 ◦x,w,y v

x,w
1 ) ◦u,x,y v

u,x
2 ,

of type (((w, y), (x,w), (u, x)), (u, y)),

where vu,wn is the n-th variable of type (u,w), Q ◦u,x,w P is ◦u,x,w(P,Q),

and 〈P0, . . . , P|w|−1〉u,w is 〈 〉u,w(P0, . . . , P|w|−1).

Since Alg(BS) is a variety, the forgetful functor GBS from Alg(BS) to

SetS
⋆×S⋆ has a left adjoint TBS which assigns to an S⋆×S⋆-sorted set the

corresponding free Bénabou algebra.

For every S-sorted set A, BOS(A) = (Hom(Aw, Au))(w,u)∈S⋆×S⋆ is en-

dowed with a Bénabou algebra structure (see [5], Proposition 3.2, pp. 149–

150, for more details). Let us denote by BOS(A) the corresponding ΣBS -

algebra.

For every S-sorted signature Σ, BTS(Σ) = (TΣ(↓w)u)(w,u)∈S⋆×S⋆, that

is naturally isomorphic to (Hom(↓u,TΣ(↓w))(w,u)∈S⋆×S⋆ , is endowed with

a Bénabou algebra structure (see [5], Proposition 3.3, p. 150, for more

details). Let us denote by BTS(Σ) the corresponding ΣBS -algebra.

Next, after defining the category BThf(S), of finitary many-sorted alge-

braic theories of Bénabou (defined for the first time in [1]), which is a strict

generalization of the category LThf(S), of finitary single-sorted algebraic

theories of Lawvere, we state that there exists an isomorphism between

BThf(S) and Alg(BS).

Definition 4.4. We denote by BThf(S) the category of finitary many-

sorted algebraic theories of Bénabou. By a finitary many-sorted algebraic

theory of Bénabou is meant a pair B = (B, pB), where B is a category that

has as objects the words on S, and pB a family (pB,w)w∈S⋆ such that, for

every word w ∈ S⋆, pB,w is a family (pB,w
i : w // (wi))i∈|w| of morphisms in

B, the projections for w (where (wi) is the word of length 1 on S whose only

letter is wi) such that (w, pB,w) is a product in B of the family of words

((wi))i∈|w|. A morphism F : B = (B, pB) // B′ = (B′, pB
′
) of finitary
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many-sorted algebraic theories of Bénabou is a functor F from B to B′ such

that the object mapping of F is the identity and the morphism mapping of

F preserves the projections, i.e., for every w ∈ S⋆ and i ∈ |w|, it happens

that F (pB,w
i ) = pB

′,w
i .

Proposition 4.5. There exists an isomorphism from the category

Alg(BS) to the category BThf(S).

Proof. See [4]. �

Next we state that the categories Alg(HS) and Alg(BS) are equivalent.

Proposition 4.6. For every set of sorts S, the categories Alg(HS) and

Alg(BS) are equivalent.

Proof. See [5]. �

Later on, after having defined the morphisms and transformations of

Fujiwara which will allow us to obtain the corresponding 2-category Spfpd,

of specifications, we will get such an equivalence (which can be considered

as having a semantic character) as a consequence, on the one hand, of the

existence of a more basic (syntactic) equivalence between the specifications

of Hall and Bénabou in Spfpd and, on the other hand, of the existence of

a pseudo-functor from Spfpd to the 2-category Cat.

In the following proposition, for a set of sorts S, we state some relations

among the just stated equivalence between the categories Alg(HS) and

Alg(BS), the adjunctions THS ⊣GHS and TBS ⊣GBS , and the adjunction
∐

1×≬S
⊣∆1×≬S determined by the mapping 1× ≬S from S⋆ × S to S⋆ × S⋆

which sends a pair (w, s) in S⋆×S to the pair (w, (s)) in S⋆×S⋆ is isomorphic

to BTS(Σ).

Proposition 4.7. Let S be a set of sorts. Then for the diagram

SetS
⋆×S Alg(HS)

SetS
⋆×S⋆ Alg(BS)

oo
GHS

⊤

THS

//OO

∆1×≬S⊣
∐

1×≬S

��

OO

Fb,h≡Fh,b

��oo
GBS

⊤

TBS

//
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we have that ∆1×≬S ◦ GBS = GHS ◦ Fb,h and TBS ◦
∐

1×≬S
∼= Fh,b ◦ THS .

Proof. See [5]. �

Corollary 4.8. Let Σ be an S-sorted signature. Then the free Bénabou

algebra TBS(
∐

1×≬S
Σ) on

∐

1×≬S
Σ is isomorphic to the Bénabou algebra

BTS(Σ) for (S,Σ).

Proof. See [5]. �

This corollary enables us, on the one hand, to get a more tractable

description of the terms in TBS(
∐

1×≬S
Σ), and, on the other hand, to give,

in the fifth section, an alternative, but equivalent, definition of the concept

of morphism of Fujiwara between signatures.

.5 Morphisms of Fujiwara.

In Mathematics it is standard to compare pairs of objects by means of

homomorphisms, i.e., mappings from one of them to the other which relate,

in a predetermined way, the primitive operations on the source object to

the corresponding primitive operations on the target object. But there are

natural examples of comparisons between objects, e.g., the derivations in

ring theory (see [17], pp. 169–172), which can only be stated by relating

the primitive operations on the source object to corresponding (families

of ) derived operations on the target object, thus showing the necessity of

conveniently generalizing the ordinary concept of homomorphism.

In this section, following the work by Fujiwara in [8], we generalize

the morphisms in Sig in such a way that a signature morphism from a

signature into another, to be called henceforth a morphism of Fujiwara, or

more briefly, a polyderivor, will consist of two suitably related mappings:

On the one hand, a mapping which relates the sets of sorts of the signatures

and assigns to each sort in the first, a derived sort in the second, i.e., a word

on the set of sorts of the second, and, on the other hand, a mapping which

assigns to each formal operation in the first, a family of terms in the second,

all in such a way that both transformations are compatible. This type of

signature morphism, from which we will get a category Sigpd, with the same

objects that Sig, will allow us to generalize, concordantly, the morphisms

between algebras.
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We will also prove that the category Sigpd is isomorphic to the Kleisli

category for a monad in Sig, and that fact will confirm, to some extend, the

naturalness of the concept of polyderivor. Furthermore, the contravariant

functor Alg : Sig // Cat will be lifted to a contravariant pseudo-functor

Algpd : Sigpd
// Cat and, by applying the EG-construction, we will get

the category Algpd of algebras and algebra morphisms that will have the

polyderivors as a component.

Next we define the concept of polyderivor, and we warn the reader about

the convenience of looking at the notational conventions stated in the last

paragraph of the introduction that have to do with the notion of monoid.

Definition 5.1. Let Σ = (S,Σ) and Λ = (T,Λ) be signatures. A

polyderivor from Σ to Λ is a pair d = (ϕ, d), where ϕ : S // T ⋆ while

d : Σ // BTT (Λ)ϕ♯×ϕ.

Therefore, if d : Σ // Λ is a polyderivor, then, for every (w, s) ∈ S⋆×S,

we have that

dw,s : Σw,s
// BTT (Λ)ϕ♯(w),ϕ(s)(= TΛ(↓ϕ♯(w))ϕ(s)),

and, given that ∆ϕ♯×ϕ = ∆1×≬S ◦ ∆ϕ♯×ϕ♯ and the functor
∐

1×≬S
is left

adjoint to the functor ∆1×≬S , d is, essentially, an S⋆ × S⋆-sorted mapping

θ1×≬S(d) :
∐

1×≬S
Σ // BTT (Λ)ϕ♯×ϕ♯ .

Henceforth, for every polyderivor d, we identify d and θ1×≬S(d).

For every signature Λ = (T,Λ), BTT (Λ) is the underlying many-sorted

set of BTT (Λ), the Bénabou algebra for Λ. But BTT (Λ) is isomorphic

to TBT (
∐

1×≬T
Λ), by Corollary 4.8. Hence the polyderivors can also be

defined as pairs d = (ϕ, d), where ϕ is a mapping from S to T ⋆ while d is

an S⋆ × S-sorted mapping from Σ to TBT (
∐

1×≬T
Λ)ϕ♯×ϕ, or, equivalently,

an S⋆ × S⋆-sorted mapping from
∐

1×≬S
Σ to TBT (

∐

1×≬T
Λ)ϕ♯×ϕ♯ .

Example. Let Σ be a signature and p ∈ N. Then taking

1. As ϕ : S // S⋆ the mapping which sends s ∈ S to the word fµ∈p(s)

and,

2. For (w, s) ∈ S⋆ × S, as dw,s the mapping from Σw,s to TΣ(↓ϕ♯(w))ps
(since, in this case, TΣ(↓ϕ♯(w))ϕ(s) = TΣ(↓ϕ♯(w))ps), which sends

σ ∈ Σw,s to

(σ(vw0
0 , vw1

p , . . . , v
w|w|−1

(|w|−1)p), . . . , σ(vw0
p−1, v

w1
2p−1, . . . , v

w|w|−1

|w|p−1)),
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in TΣ(↓ϕ♯(w))ps , we have that d = (ϕ, d) is an endopolyderivor of Σ.

We refer to the last section of this article for additional examples of poly-

derivors. Actually, in the seventh section we consider, clear and natural,

polyderivors between the (many-sorted) signatures of Hall and Bénabou.

Example. Let Σ = (Σn)n∈N and Λ = (Λn)n∈N be two single-sorted

signatures and (Φ, P ), with Φ = {ϕµ | µ ∈ p }, a family of basic mapping-

formulas from Σ to Λ as defined by Fujiwara in [8], p. 155. Then by

associating

1. To the single-sorted signatures Σ and Λ, the signatures

(1, (Σn,0)(n,0)∈1⋆×1) and (1, (Λn,0)(n,0)∈1⋆×1), respectively, where, for

every n ∈ 1⋆ ∼= N, Σn,0 = Σn and Λn,0 = Λn, and

2. To the morphism (Φ, P ) the pair (κp, d), where κp is the mapping

from 1 to 1⋆ which sends 0 ∈ 1 to p ∈ 1⋆ and d the 1⋆ × 1-sorted

mapping from (Σn,0)(n,0)∈1⋆×1 to

(TΛ(↓κ♯p(n))κp(0))(n,0)∈1⋆×1
∼= (TΛ(Φ × ↓vn)

p)n∈N

which, for n ∈ 1⋆, sends σ ∈ Σn to dn,0(σ) = (Pnϕ0,σ, . . . , P
n
ϕp−1,σ),

we have that the families of basic mapping-formulas defined by Fujiwara for

the single-sorted case fall under the concept of polyderivor. Consequently,

all the examples provided by Fujiwara in [8], pp. 155–156, once reformulated

as just said, are also examples of polyderivors.

Example. Let (ϕ, d) be a standard signature morphism from a signa-

ture (S,Σ) into another (T,Λ).

Then from ϕ : S // T we get ≬T ◦ϕ : S // T ⋆, and from d : Σ // Λϕ⋆×ϕ,

because there exists a canonical embedding from Λϕ⋆×ϕ into

(
∐

1×≬T

Λ)(≬T ◦ϕ)♯×(≬T ◦ϕ),

we get the composite mapping

Σ
d // Λϕ⋆×ϕ → (

∐

1×≬T
Λ)(≬T ◦ϕ)♯×(≬T ◦ϕ) → TBT (

∐

1×≬T
Λ)(≬T ◦ϕ)♯×(≬T ◦ϕ).

Thus the standard signature morphisms fall under the concept of poly-

derivor.
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Our next goal is to define the composition of polyderivors in order to get

the category Sigpd, of signatures and polyderivors. To attain the just stated

goal we need to recall beforehand the concept of derivor from a signature

into another, which was defined by Goguen, Thatcher, and Wagner in [13],

p. 86, and to set out some of its properties.

Definition 5.2. Let Σ and Λ be signatures. Then a derivor from Σ

to Λ is a pair d = (ϕ, d), with ϕ : S // T and d : Σ // HTT (Λ)ϕ⋆×ϕ.

Therefore, if d : Σ // Λ is a derivor, then, for every (w, s) ∈ S⋆ × S,

we have that

dw,s : Σw,s
// HTT (Λ)ϕ⋆(w),ϕ(s)(= TΛ(↓ϕ⋆(w))ϕ(s))

sends a formal operation σ : w // s to a term dw,s(σ) : ϕ⋆(w) //ϕ(s), i.e.,

a term for Λ of type (↓ϕ⋆(w), ϕ(s)), and all in such a way that the arities

and coarities are preserved, modulus the correspondence between the sorts

given by the mapping ϕ.

For every signature Λ we have that HTT (Λ) is the underlying many-

sorted set of HTT (Λ), the Hall algebra for (T,Λ). But HTT (Λ) is iso-

morphic to THT (Λ), the free HT -algebra on Λ, by Proposition 4.2. Con-

sequently the derivors can be defined, alternatively, but equivalently, as

pairs d = (ϕ, d) with ϕ : S // T and d : Σ // THT (Λ). Thus, taking into

account the equivalence between the categories Alg(HT ) and Alg(BT ), we

can state the following

Corollary 5.3. Every derivor is a polyderivor (although, obviously, not

every polyderivor is a derivor).

An example of derivor originating from the field of propositional logic

is that provided by Gödel (see [10]) in his work about an interpretation of

the intuitionistic propositional logic into a modal extension of the classical

propositional logic.

Example. Let Σ = (Σn)n∈N be a single-sorted signature such that

Σ1 = {¬i }, Σ2 = {∧i,∨i,→i } and Σn = ∅, if n 6= 1, 2, Λ = (Λn)n∈N a

single-sorted signature such that Λ1 = {¬c,� }, Λ2 = {∧c,∨c,→c }, and

Λn = ∅, if n 6= 1, 2, and g = (gn)n∈N the family defined, for n 6= 1, 2, as

the unique mapping from ∅ to TΛ(↓vn), and, for n = 1, 2, as follows:
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1. g1(¬i) = ¬c�v0.

2. g2(∧i) = v0 ∧c v1.

3. g2(∨i) = �v0 ∨c �v1.

4. g2(→i) = �v0 →c �v1.

Then d is a derivor from Σ to Λ. This derivor defines the intuitionistic con-

nectives in terms of the classical connectives together with �, the operator

of necessity.

Next we proceed to define the composition of derivors and to prove that

the corresponding category of signatures and derivors, denoted by Sigd, is

isomorphic to the Kleisli category for a monad Td in Sig. By proceeding in

this way we, on the one hand, move one step forward, from the standpoint of

category theory, into the investigation of some of the most notable positive

properties of the category Sigd, with regard to what has been done in [13],

and, on the other hand, get a model on which to base the subsequent work

that we have to do concerning polyderivors.

We point out that the definition of the composition of derivors, in strong

contrast with that of polyderivors below, is based on the standard specifi-

cation morphisms between Hall specifications. Actually, if instead of start-

ing from a mapping ϕ : S // T ⋆, as is the case for the polyderivors, we

start from an ordinary mapping ϕ : S // T , then, as we state next, we

get a functor (ϕ⋆ × ϕ, hϕ)∗ from Alg(HT ) to Alg(HS) (and the existence

of such a functor will follow from that of a specification morphism from

(S⋆ × S,ΣHS , EHS ) to (T ⋆ × T,ΣHT , EHT )). This functor, in its turn, will

allows us to endow to the many-sorted set HTT (Λ)ϕ⋆×ϕ with a Hall alge-

bra structure for S, from which the composition of derivors will be defined

explicitly.

Proposition 5.4. Let ϕ : S // T be a mapping. Then the S⋆×S-sorted

mapping hϕ : ΣHS // ΣHT
ϕ⋆×ϕ defined as follows:

1. For every w ∈ S⋆ and i ∈ |w|, hϕ(πwi ) = π
ϕ⋆(w)
i ,

2. For every u, w ∈ S⋆ and s ∈ S, hϕ(ξu,w,s) = ξϕ⋆(u),ϕ⋆(w),ϕ(s),

is such that (ϕ⋆ × ϕ, hϕ) : (S⋆ × S,ΣHS , EHS ) // (T ⋆ × T,ΣHT , EHT ) is

a specification morphism. Therefore ϕ : S // T induces a functor (ϕ⋆ ×
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ϕ, hϕ)∗ from Alg(HT ) to Alg(HS) which sends HTT (Λ), the free Hall al-

gebra on a T -sorted signature Λ, to a Hall algebra for S, with HTT (Λ)ϕ⋆×ϕ
as underlying S⋆ × S-sorted set.

For a derivor d : Σ // Λ, the many-sorted mapping d from Σ to

HTT (Λ)ϕ⋆×ϕ can be lifted to a homomorphism of Hall algebras d♯ from

HTS(Σ) to HTT (Λ)ϕ⋆×ϕ, whose underlying S⋆×S-sorted mapping deter-

mines a translation of terms for Σ to terms for Λ. In particular, for every

(w, s) ∈ S⋆×S, d♯w,s assigns to terms in TΣ(↓w)s terms in TΛ(↓ϕ♯(w))ϕ(s).

Before we define immediately below the composition of derivors and

the identities we recall that Σ, Λ, Ω, and Ξ denote the signatures (S,Σ),

(T,Λ), (U,Ω), and (X,Ξ), respectively, and d, e, and h denote the derivors

(ϕ, d), (ψ, e), and (γ, h), respectively.

Definition 5.5. Let d : Σ // Λ and e : Λ // Ω be derivors. Then

e ◦ d, the composition of d and e, is the derivor (ψ ◦ ϕ, e♯ϕ⋆×ϕ ◦ d), where

e♯ϕ⋆×ϕ ◦ d is obtained from

Λ
ηHT
Λ //

e
&&LLLLLLLLLLLLLL HTT (Λ)

e♯

��
HTU (Ω)ψ⋆×ψ

as

HTT (Λ)ϕ⋆×ϕ

e♯ϕ⋆×ϕ
��

Σ
doo

HTU(Ω)ψ⋆×ψϕ⋆×ϕ

where e♯ is the extension of e to the free Hall algebra on Λ. On the other

hand, for every signature Σ, the identity at Σ is (idS , η
HS
Σ ).

The preceding definition allows us to get a corresponding, and explicit,

category of signatures and derivors.

Proposition 5.6. The signatures together with the derivors determine

a category, that we denote by Sigd.

Following this we state that Sigd can be obtained, naturally, as an

isomorphic copy of the Kleisli category for a monad in Sig. This is founded

on the fact that, for every set of sorts S, we have the adjunction THS ⊣GHS ,

from which we get the monad THS = (THS , η
HS , µHS ) in SetS

⋆×S, that

canonically induces the monad in Sig at issue.
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Proposition 5.7. The triple Td = (d, ηd, µd), where d is the endofunc-

tor of Sig which sends a signature Σ to the signature (S,THS (Σ)), and a

signature morphism d from Σ to Λ to the signature morphism (ϕ, d♯) from

(S,THS (Σ)) to (T,THT (Λ)); ηd
Σ = (idS , η

HS
Σ ), with ηHS

Σ the value at Σ of

the unit ηHS of the monad THS ; and µd
Σ = (idS , µ

HS
Σ ), with µHS

Σ the value

at Σ of the multiplication µHS of the monad THS , is a monad in Sig and

the categories Sigd and Kl(Td) are isomorphic.

Remark. Almost all the results about the categories Sig, Alg and

Spf established in the second and third section, suitably extended, are

also valid for the corresponding categories Sigd, Algd and Spfd. But the

derivors being a particular case of the polyderivors, we restrict ourselves to

unfold those results only for the polyderivors.

Our next goal is to define the composition of two polyderivors. To attain

it we begin by stating that every mapping ϕ from S to T ⋆ determines a

functor (ϕ♯×ϕ♯, bϕ)∗ from Alg(BT ) to Alg(BS) (observe that such a functor

is induced not by a standard specification morphism between Bénabou

specifications, but by a derivor bϕ between the corresponding Bénabou

signatures). This functor, in its turn, will allow us to endow the many-

sorted set BTT (Λ)ϕ♯×ϕ♯ with a Bénabou algebra structure for S, from which

the definition of the composition of polyderivors will follow.

Proposition 5.8. Let ϕ be a mapping from S to T ⋆. Then the ((S⋆)2)⋆×

(S⋆)2-sorted mapping bϕ : ΣBS // HTT ⋆×T ⋆(Σ
BT )(ϕ♯×ϕ♯)⋆×(ϕ♯×ϕ♯) defined

as follows:

1. For every w ∈ S⋆ and α ∈ |w|, bϕ(πwα ) is the ΣBT -term

〈π
ϕ♯(w)
P

β∈α pβ
, . . . , π

ϕ♯(w)
P

β∈α+1 pβ−1〉ϕ♯(w),ϕ(wα)

of type λ // (ϕ♯(w), (ϕ(wα))),

2. For every u, w ∈ S⋆, bϕ(〈 〉u,w) is the ΣBT -term

〈π
ϕ(w0)
0 ◦ v

(ϕ♯(u),ϕ(w0))
0 , . . . , π

ϕ(w0)
|ϕ(w0)|−1 ◦ v

(ϕ♯(u),ϕ(w0))
0 , . . . ,

π
ϕ(wi)
0 ◦ v

(ϕ♯(u),ϕ(wi))
i , . . . , π

ϕ(wi)
|ϕ(wi)|−1 ◦ v

(ϕ♯(u),ϕ(wi))
i , . . . ,

π
ϕ(w|w|−1)

0 ◦ v
(ϕ♯(u),ϕ(w|w|−1))

|w|−1 , . . . , π
ϕ(w|w|−1)

|ϕ(w|w|−1)|−1 ◦ v
(ϕ♯(u),ϕ(w|w|−1))

|w|−1 〉

of type ((ϕ♯(u), ϕ(w0)), . . . , (ϕ
♯(u), ϕ(w|w|−1))) // (ϕ♯(u), ϕ♯(w)),
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3. For every u, x, w ∈ S⋆, bϕ(◦u,x,w) is the ΣBT -term

◦ϕ♯(u),ϕ♯(x),ϕ♯(w)(v
(ϕ♯(u),ϕ♯(x))
0 , v

(ϕ♯(x),ϕ♯(w))
1 )

of type ((ϕ♯(u), ϕ♯(x)), (ϕ♯(x), ϕ♯(w))) // (ϕ♯(u), ϕ♯(w)),

is such that (ϕ♯ × ϕ♯, bϕ) : (S⋆ × S⋆,ΣBS , EBS ) // (T ⋆ × T ⋆,ΣBT , EBT ) is

a specification morphism. Therefore ϕ : S // T ⋆ induces a functor (ϕ♯ ×

ϕ♯, bϕ)∗ from Alg(BT ) to Alg(BS) which sends BTT (Λ), the free Bénabou

algebra on the T -sorted signature Λ, to a Bénabou algebra for S, with

BTT (Λ)ϕ♯×ϕ♯ as underlying S⋆ × S⋆-sorted set.

For a polyderivor d : Σ // Λ, we can extend the S⋆ × S⋆-sorted map-

ping d from
∐

1×≬S
Σ to BTT (Λ)ϕ♯×ϕ♯ to a homomorphism of Bénabou alge-

bras d♯ from BTS(Σ) to BTT (Λ)ϕ♯×ϕ♯ , whose underlying S⋆ × S⋆-mapping

determines a translation of terms for Σ into terms for Λ.

We define next the composition of polyderivors and the identities.

Definition 5.9. Let d : Σ // Λ and e : Λ // Ω be polyderivors. Then

the composition of d and e, denoted by e ◦ d, is the morphism (ψ♯ ◦

ϕ, e♯
ϕ♯×ϕ♯

◦ d), where the first component ψ♯ ◦ϕ is a mapping from S to U⋆

and e♯
ϕ♯×ϕ♯

◦ d is obtained from

∐

1×≬T
Λ

ηBT
‘

1×≬T
Λ

//

e
''OOOOOOOOOOOOOO

BTT (Λ)

e♯

��
BTU (Ω)ψ♯×ψ♯

as

BTT (Λ)ϕ♯×ϕ♯

e♯
ϕ♯×ϕ♯

��

∐

1×≬S
Σdoo

BTU (Ω)ψ♯×ψ♯ϕ♯×ϕ♯

On the other hand, for every signature Σ, the identity at Σ is the poly-

derivor (≬S , η
BS
Σ ).

Proposition 5.10. The signatures together with the polyderivors de-

termine a category, that we denote by Sigpd.

Following this we prove that the category Sigpd can be obtained as an

isomorphic copy of the Kleisli category for some monad in Sig. However,

the process we should follow to determine such a monad is more complicated

than the one, relatively simple, we have followed for the derivors. This is
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due to the fact that, for a signature Σ = (S,Σ), the pair (S⋆×S⋆,BTS(Σ))

is not a signature, because BTS(Σ) is an S⋆ × S⋆-sorted set, but not an

((S⋆)2)⋆ × (S⋆)2-sorted set.

Proposition 5.11. There exists a monad Tpd = (pd, ηpd, µpd) in Sig

such that the categories Sigpd and Kl(Tpd) are isomorphic.

Proof. Let pd be the endofunctor of Sig defined as follows: its object

mapping sends each signature Σ to (S⋆,TBS(
∐

1×≬S
Σ)fS×1)); its arrow

mapping sends each signature morphism d from Σ to Λ to

(ϕ⋆, (d♯)fS×1) : (S⋆,TBS (
∐

1×≬S
Σ)fS×1)) // (T ⋆,TBT (

∐

1×≬T
Λ)fT×1)),

where TBS(
∐

1×≬S
Σ)fS×1 is the value at Σ of the functor

SetS
⋆×S

∐

1×≬S //
SetS

⋆×S⋆
TBS //

SetS
⋆×S⋆

∆fS×1 //
SetS

⋆⋆×S⋆ .

After having defined the endofunctor pd of Sig, we proceed to define

the unit ηpd and multiplication µpd of the monad Tpd.

Let Σ be a signature. Then we have that ηpd

Σ , the component of the unit

ηpd of the purported monad Tpd in Σ, is the signature morphism (≬S , η
BS
Σ ),

i.e., the value at Σ of the unit of the monad TBS = (TBS , η
BS , µBS ) in

SetS
⋆×S⋆ , obtained from the adjunction TBS ⊣ GBS . On the other hand,

we want µpd

Σ , the component of the multiplication µpd of the purported

monad Tpd in Σ, to be a morphism as in the following diagram

(S⋆⋆,TBS⋆ (
∐

1×≬S⋆
(TBS(

∐

1×≬S
Σ)fS×1))fS⋆×1)

µpd

Σ

��
(S⋆,TBS (

∐

1×≬S
Σ)fS×1)

The first coordinate of µpd

Σ is fS , the multiplication of the monad T⋆. To

get the second coordinate of µpd

Σ we have to define a natural transformation
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α as in the following diagram

SetS
⋆⋆×S⋆⋆ SetS

⋆⋆×S⋆⋆ SetS
⋆⋆⋆×S⋆⋆

SetS
⋆⋆×S⋆

SetS
⋆×S⋆ SetS

⋆×S⋆ SetS
⋆×S⋆ SetS

⋆⋆×S⋆

SetS
⋆×S

∐

1×≬S

OO

TBS //

∆fS×1

OO

TBS //

∐

1×≬S⋆

OO

TBS⋆ //
∆fS⋆×1//

∆fS×1 //

∆fS×fS

OO

∆fS⋆×fS

OO

TBS

88

BBBB �$
α =

�� ��

�� µBS

Let Θ be an S⋆ × S⋆-sorted set. Then TBS (Θ)fS×fS has a natural ΣBS⋆ -

algebra structure, obtained from the (S⋆⋆×S⋆⋆)⋆×(S⋆⋆×S⋆⋆)-sorted map-

ping

bfS : ΣBS⋆ // TerS⋆×S⋆(Σ
BS)(fS×fS)⋆×(fS×fS)

by applying Proposition 5.8 to the mapping fS : S⋆⋆ //S⋆.

On the other hand, for every S⋆×S⋆-sorted set Θ, we have an S⋆⋆×S⋆⋆-

sorted mapping fΘ from
∐

1×≬S⋆
(∆fS×1(Θ)) to ∆fS×fS (TBS(Θ)) which,

for every (u,w) ∈ S⋆⋆ × S⋆⋆, assigns to an element P , the image of P

under the inclusion ηBS
Θ of Θ into TBS(Θ). The definition is sound because,

in this case, w has the form (w), P is in ΘfSu,w and ηBS
Θ (P ) belongs to

∆fS×fS (TBS(Θ)).

Then the extension f ♯Θ of fΘ to TBS⋆ (
∐

1×≬S⋆
(∆fS×1(Θ))) is the com-

ponent at Θ of the natural transformation α.

Therefore, the second coordinate of µpd

Σ is the value at Σ of the natural

transformation (∆fS⋆×fS∗∆fS×1∗µ
BS∗

∐

1×≬S
)◦(∆fS⋆×1∗α∗TBS ∗

∐

1×≬S
).

Finally we prove that Sigpd and Kl(Tpd) are isomorphic.

A morphism d : Σ // Λ in Kl(Tpd) is a morphism d : Σ // pd(Λ) in

Sig, hence ϕ : S // T ⋆ and

d : Σ // ∆ϕ⋆×ϕ(TBT (
∐

1×≬T
Λ)fT×1)

= ∆ϕ♯×ϕ(TBT (
∐

1×≬T
Λ))

∼= ∆ϕ♯×ϕ(BTT (Λ)),
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that is exactly the definition of polyderivor in Sigpd. �

From Proposition 3.5, pp. 122–123, in [4], it follows that Sigpd has

coproducts.

Our next goal is to lift the contravariant functor Alg : Sig // Cat to

a contravariant pseudo-functor Algpd : Sigpd
// Cat, that will allow us,

by applying the EG-construction, to get a new category of algebras Algpd

into which is embedded the category Alg. But to achieve the just stated

objective we should define beforehand some auxiliary functors and natural

transformations.

Proposition 5.12. Let S be a set of sorts. Then we have that

1. There exists an expansion functor (·)♮S from SetS to SetS
⋆

which

sends an S-sorted set A=(As)s∈S to the S⋆-sorted set A♮S =(Aw)w∈S⋆,

and an S-sorted mapping f from A to B to the S⋆-sorted mapping

f ♮S = (fw)w∈S⋆ from (Aw)w∈S⋆ to (Bw)w∈S⋆. If A is an S-sorted

set and f : A //B an S-sorted mapping, then we say that A♮S and

f ♮S are the expansions of A and f , respectively, to the words on S

and, to simplify notation, we write A♮ and f ♮ instead of A♮S and f ♮S ,

respectively.

2. From the contravariant functor MSet, from Set to Cat, to the con-

travariant functor MSet ◦ Top
⋆ between the same categories, where

Top
⋆ is the composite of T

op
⋆ (the dual of the free monoid functor T⋆

from Set to Mon, the category of monoids), and GMon (the forget-

ful functor from Mon to Set), there exists a natural transformation

(·)♮ which sends a set S to the expansion functor (·)♮S from SetS to

SetS
⋆

.

3. There exists a natural isomorphism ιS from the functor (·)♮S⋆ ◦ (·)♮S

to the functor ∆fS ◦(·)♮S , both from the category SetS to the category

SetS
⋆⋆

.

Proof. We restrict ourselves to prove the second and third parts of the

proposition.

(2) (·)♮ is a natural transformation from MSet to MSet ◦ Top
⋆ since, for

a mapping ϕ : S // T , the functors (·)♮S ◦ ∆ϕ and ∆ϕ⋆ ◦ (·)♮T from SetT

to SetS
⋆

are identical. Observe, in particular, that for a T -sorted set B,

we have that (Bϕ)♮S = (B♮T )ϕ⋆ .
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(3) It is enough to define, for every S-sorted set A, the component (ιS)A
of ιS at A, as the S⋆⋆-isomorphism (ιS)A : A♮♮ // (A♮)f that has as w-th

coordinate, for w = (wα)α∈|w| ∈ S⋆⋆, the canonical isomorphism

A♮♮w=
∏

α∈|w|

∏

j∈|wα|
Awαj

〈prαj ◦ prα〉α∈|w|,j∈|wα|// ∏
α∈|w|, j∈|wα|

Awαj =A
♮
fw,

where prα : Aw //Awα and prαj : Awα
//Awαj are the canonical projec-

tions. To simplify notation we let ιA stand for (ιS)A. �

Corollary 5.13. Let ϕ : S // T ⋆ and ψ : T //U⋆ be mappings. Then,

for every T -sorted set B and U -sorted set C, we have that

1. ((B♮T )♮T⋆ )ϕ⋆ , denoted by Bϕ⋆, and (B♮T )ϕ♯ , denoted by Bϕ♯ , are iso-

morphic S⋆-sorted sets.

2. (((C♮U )ψ)♮T )ϕ, denoted by Cψϕ, and (C♮U )ψ♯◦ϕ, denoted by Cψ♯◦ϕ, are

isomorphic S-sorted sets.

3. There exists an isomorphism κBϕ : BOT (B)ϕ♯×ϕ♯ // BOS(Bϕ), where,

to simplify notation, we let Bϕ stand for (B♮T )ϕ.

We state in the following proposition that the polyderivors between

signatures determine functors, in the opposite direction, from the category

of algebras associated to the target signature to the category of algebras

associated to the source signature. These functors will be the components

of the morphism mapping of the contravariant pseudo-functor Algpd from

Sigpd to Cat.

Proposition 5.14. Let d : Σ // Λ be a morphism in Sigpd. Then

there exists a functor Algpd(d) = d∗
pd from Alg(Λ) to Alg(Σ) defined as

follows: its object mapping sends each Λ-algebra B = (B,G) to the Σ-

algebra d∗
pd(B) = (Bϕ, G

d), where Gd is κBϕ ◦G♯
ϕ♯×ϕ♯

◦ d, which is obtained

from

∐

1×≬T
Λ
ηBT

‘

1×≬T
Λ

//

G &&MMMMMMMMMMMMM

BTT (Λ)

G♯

��
BOT (B)

as

BTT (Λ)ϕ♯×ϕ♯

G♯
ϕ♯×ϕ♯

��

∐

1×≬S
Σdoo

BOT (B)ϕ♯×ϕ♯
κBϕ

// BOS(Bϕ)
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its arrow mapping sends each Λ-homomorphism f from B to B′ to the

Σ-homomorphism d∗
pd(f) = fϕ from d∗

pd(B) to d∗
pd(B

′).

Given a polyderivor d : Σ // Λ, a Λ-algebra B = (B,G) and an op-

eration σ ∈ Σw,s, if we agree that w is the word (si)i∈m, that, for every

i ∈ m, ϕ(si) is the word (ti,j)j∈ni , and that ϕ(s) is the word (tk)k∈p, then we

have that ϕ♯(w) is the word (t0,0, . . . , t0,n0−1, . . . , tm−1,0, . . . , tm−1,nm−1−1)

and that d(σ) : ϕ♯(w) //ϕ(s) is a family of terms P = (P0, . . . , Pp−1) such

that, for every k ∈ p, Pk : ϕ♯(w) // tk. Therefore G♯
ϕ♯×ϕ♯

(P ), the realiza-

tion of d(σ) in B, is precisely the term operation PB = 〈PB
0 , . . . , P

B
p−1〉, of

type

Bt0,0 ×· · ·×Bt0,n0−1×· · ·×Btm−1,0 ×· · ·×Btm−1,nm−1−1
//Bt0 ×· · ·×Btp−1,

that by composition with the isomorphism from Bϕw to Bϕ♯(w) provides

the operation Gd
σ

(Bt0,0 × · · · ×Bt0,n0−1) × · · · × (Btm−1,0 × · · · ×Btm−1,nm−1−1)

ιB(ϕ(s0),...,ϕ(sm−1))
��

Bt0,0 × · · · ×Bt0,n0−1 × · · · ×Btm−1,0 × · · · ×Btm−1,nm−1−1

PB

��
Bt0 × · · · ×Btp−1

It is now when we can state that the contravariant functor Alg from

Sig to Cat, defined in the second section, can be lifted to a contravariant

pseudo-functor Algpd from Sigpd to Cat.

Proposition 5.15. There exists a contravariant pseudo-functor Algpd

from Sigpd to the 2-category Cat given by the following data: its object

mapping sends each signature Σ to Algpd(Σ) = Alg(Σ); its arrow map-

ping sends each polyderivor d from Σ to Λ to d∗
pd : Alg(Λ) // Alg(Σ);

for every d : Σ // Λ and e : Λ // Ω, the natural isomorphism γd,e from

e∗pd ◦d∗
pd to (e ◦d)∗pd is that which is defined, for every Ω-algebra C, as the

isomorphism ιCψ⋆◦ϕ; for every Σ, the natural isomorphism νΣ from IdAlg(Σ)

to (≬S , η
BS
Σ )∗pd is that which is defined, for every Σ-algebra A, as the canon-

ical isomorphism δAS : A // (A(s))s∈S.
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By applying the EG-construction to the contravariant pseudo-functor

Algpd we get the category Algpd.

Definition 5.16. The category Algpd is given by Algpd =
∫ Sigpd Algpd.

Therefore the category Algpd has as objects the pairs (Σ,A), with Σ a

signature and A a Σ-algebra, and as morphisms from (Σ,A) to (Λ,B), the

pairs (d, h), with d a polyderivor from Σ to Λ and h a Σ-homomorphism

from A to d∗
pd(B).

Example. Let Σ be a signature, p ∈ N, and d = (ϕ, d) the endopoly-

derivor of Σ, where ϕ : S //S⋆ is the mapping which sends s ∈ S to the

word fµ∈p(s) and, for (w, s) ∈ S⋆ × S, dw,s the mapping from Σw,s to

TΣ(↓ϕ♯(w))ps which sends σ ∈ Σw,s to

(σ(vw0
0 , vw1

p , . . . , v
w|w|−1

(|w|−1)p), . . . , σ(vw0
p−1, v

w1
2p−1, . . . , v

w|w|−1

|w|p−1)),

in TΣ(↓ϕ♯(w))ps . Then, for the polyderivor d and two Σ-algebras A and

B, we have that (d, 〈hµ〉µ∈p), where, for every µ ∈ p, hµ = (hµs )s∈S is

a Σ-homomorphism from A to B, is a morphism from (Σ,A) to (Σ,B),

because d∗
pd(B) = Bp.

Additional examples related to computer sciences can be found, e.g.,

in [13].

We define next some auxiliary functors and natural transformations

that we will use afterwards to prove, on the one hand, that there exists a

pseudo-functor Terpd from the category Sigpd to the 2-category Cat, which

generalizes the pseudo-functor Ter from the category Sig to the 2-category

Cat, and, on the other hand, that the category Algpd has coproducts.

Proposition 5.17. Let S be a set of sorts. Then we have that

1. There exists a compression functor (·)S from SetS
⋆

to SetS, left ad-

joint to the expansion functor (·)♮S ; its object mapping is defined,

for each S⋆-sorted set C and s ∈ S, as CS
s =

⋃

w∈S⋆ &
w−1[s] 6=∅

(Cw ×

{w} × w−1[s]); its arrow mapping is defined, for each S⋆-mapping

f : C //C ′, s ∈ S, and (c, w, i) in CS
s , as fSs (c, w, i) = (fw(c), w, i).

2. From the contravariant functor MSet ◦ Top
⋆ , from Set to Cat, to the

contravariant functor MSet between the same categories, there exists

a natural transformation (·) which sends a set S to the compression

functor (·)S from SetS
⋆

to SetS.
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3. There exists a natural isomorphism ζS from the functor (·)S ◦ (·)S⋆ to

the functor (·)S ◦
∐

fS
.

If ϕ : S // T ⋆ is a mapping, then from the adjunctions
∐

ϕ ⊣∆ϕ and

(·)T ⊣(·)♮T , we get the adjunction
∐

ϕ⊣∆♮
ϕ where, to simplify notation, we

let
∐

ϕ stand for (·)T ◦
∐

ϕ and let ∆♮
ϕ stand for ∆ϕ ◦(·)♮T . Furthermore, we

write θ♮ϕ, η♮ϕ, and ε♮ϕ, respectively, for the natural isomorphism, the unit,

and the counit of this composite adjunction.

What we want to establish now is that Algpd has coproducts and for this

we begin by proving that, for every polyderivor d : Σ // Λ, the functor

d∗
pd from Alg(Λ) to Alg(Σ) has a left adjoint d

pd
∗ .

Proposition 5.18. Let d : Σ // Λ be a polyderivor. Then there exists

a functor d
pd
∗ from Alg(Σ) to Alg(Λ) that is left adjoint to the functor d∗

pd

from Alg(Λ) to Alg(Σ).

Proof. We restrict ourselves to define the action of d
pd
∗ on the objects

since the verification of the remaining parts is straightforward. Let A be a

Σ-algebra. Then d
pd
∗ (A) is the Λ-algebra defined as TΛ(

∐

ϕA)/RA, where

RA is the congruence on TΛ(
∐

ϕA) generated by the T -sorted relation RA,

defined, for every t ∈ T , as

RA
t =

{
(
(FA

σ (ai | i ∈ |w|), s, ϕ(s), j), d(σ)j (a)
)
∣
∣
∣
∣

j ∈ ϕ(s)−1[t], w ∈ S⋆,

s ∈ S, σ ∈ Σw,s, a ∈ Aw

}

,

a being the matrix

a =

(
(a0,w0,ϕ(w0),0) ··· (a0,w0,ϕ(w0),|ϕ(w0)|−1)

...
. . .

...
(a|w|−1,w|w|−1,ϕ(w|w|−1),0) ··· (a|w|−1,w|w|−1,ϕ(w|w|−1),|ϕ(w|w|−1)|−1)

)

,

and d(σ)j(a) the result of replacing the variables in the term d(σ)j with

the entries in the matrix a (recall that, for σ ∈ Σw,s, we have agreed

that d(σ) = dw,s(σ), where dw,s(σ) ∈ TΛ(↓ϕ♯(w))ϕ(s), hence, for every

j ∈ |ϕ(s)|, d(σ)j ∈ TΛ(↓ϕ♯(w))ϕ(s)j ). �

Proposition 5.19. The category Algpd has coproducts.

Proof. The category Sigpd has coproducts. For every signature Σ, the

category Alg(Σ) has coproducts. The functor Algpd is locally reversible.
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Therefore, by a particular case of Theorem 2, pp. 250–251, in [25], the

category Algpd has coproducts. �

Our next goal is to state that every polyderivor induces a functor be-

tween the associated categories of terms as was the case for the signature

morphisms.

Proposition 5.20. Let d : Σ // Λ be a polyderivor. Then there exists

a functor d
pd
⋄ from Ter(Σ) to Ter(Λ). Its object mapping assigns to each

S-sorted set X the T -sorted set d
pd
⋄ (X) =

∐

ϕX; its morphism mapping as-

signs to each morphism P from X to Y in Ter(Σ) the morphism d
pd
⋄ (P ) =

(θ♮ϕ)−1(ηdX ◦ P ) from
∐

ϕX to
∐

ϕ Y , where θ♮ϕ is the natural isomorphism

of the adjunction
∐

ϕ ⊣ ∆♮
ϕ, ηdX the Σ-homomorphism from TΣ(X) to

∆♮
ϕ(TΛ(

∐

ϕX)) that extends the S-sorted mapping ∆♮
ϕ(η‘

ϕX
)◦(η♮ϕ)X from

X to ∆♮
ϕ(TΛ(

∐

ϕX)), and η♮ϕ the unit of the adjunction
∐

ϕ⊣∆♮
ϕ.

Proof. The proof is founded on the fact that for every term P : X // Y

the term d
pd
⋄ (P ) :

∐

ϕX
//
∐

ϕ Y is the composition of the morphisms in

the following diagram

∐

ϕ Y

∐

ϕ P //

d
pd
⋄ (P )

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

∐

ϕ TΣ(X)

∐

ϕ η
d
X // ∐

ϕ ∆♮
ϕ(TΛ(

∐

ϕX))

(ε♮ϕ)TΛ(
‘

ϕX)

��
TΛ(

∐

ϕX)

where (ε♮ϕ)TΛ(
‘

ϕX) is the value at TΛ(
∐

ϕX) of the counit of the adjunc-

tion
∐

ϕ⊣∆♮
ϕ. �

Before we state that the above construction can be lifted to a pseudo-

functor from the category Sigpd to the 2-category Cat, we point out that

the relation of satisfaction is also invariant under polyderivor change, i.e.,

that for every polyderivor d : Σ // Λ, if (P,Q) is a Σ-equation of type

(X,Y ) and A a Λ-algebra, then

d∗
pd(A) |=Σ

X,Y (P,Q) if and only if A |=Λ
‘

ϕX,
‘

ϕ Y
(dpd

⋄ (P ),dpd
⋄ (Q)).
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This follows from the invariant character under signature change through

the polyderivors of the realization of terms as term operations in arbitrary,

but fixed, algebras.

It is now when we can properly state that the pseudo-functor Ter from

Sig to the 2-category Cat, defined in the second section, can be lifted to a

pseudo-functor Terpd from Sigpd to the 2-category Cat.

Proposition 5.21. There exists a pseudo-functor Terpd from Sigpd to

the 2-category Cat given by the following data

1. The object mapping of Terpd is that which sends Σ in Sigpd to Terpd(Σ)

= Ter(Σ).

2. The morphism mapping of Terpd is that which sends d : Σ // Λ in

Sigpd to d
pd
⋄ : Ter(Σ) // Ter(Λ).

3. For d : Σ // Λ and e : Λ // Ω, the natural isomorphism γd,e from

the composite e
pd
⋄ ◦ d

pd
⋄ to (e ◦ d)pd

⋄ is that which is defined, for every

S-sorted set X, as the isomorphism γd,e
X :

∐

ψ

∐

ϕX
//
∐

ψ♯◦ϕX in

Ter(Ω) that corresponds to the U -sorted mapping

∐

ψ♯◦ϕX
ρX //

∐

ψ

∐

ϕX
η‘

ψ

‘

ϕX // TΩ(
∐

ψ

∐

ϕX),

where ρ is the isomorphism obtained from the following diagram

SetS
ED

BC

∐

ψ♯◦ϕ

oo

∐

ϕ

%%LLLLLLLLLLLLLLL

∐

ϕ

��
SetT

∐

ψ

%%LLLLLLLLLLLLLLL

∐

ψ

��

SetT
⋆

ED

BC

∐

ψ♯

oo

=

∐

ψ⋆

&&MMMMMMMMMMMMMMMM

(·)T
oo

SetU SetU
⋆

(·)U
oo

SetU
⋆⋆

(·)U⋆
oo

∐

fUxxqqqqqqqqqqqqqqqq

SetU
⋆

� �� �
KS
(ζU

⋆
)−1

(·)U

eeLLLLLLLLLLLLLLL

oooos{
(γϕ,ψ

♯
)−1

=

and γ the isomorphism associated to the pseudo-functor MSet∐.
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4. For Σ, the natural isomorphism νΣ from IdTer(Σ) to (≬S , η
BS
Σ )pd

⋄ is

that which is defined, for an S-sorted set X, as the isomorphism νΣ
X

from X to
∐

≬S
X that corresponds to the S-sorted mapping ηX ◦ τSX

from
∐

≬S
X to TΩ(X), where τS is the natural isomorphism from

(·)S ◦
∐

≬S
to IdSetS defined, for an S-sorted set X, as the S-sorted

mapping whose s-th coordinate, for s ∈ S, sends an ((a, s), (s), 0) ∈

(
∐

≬S
X)s to (τSX)s((a, s), (s), 0) = a.

To finalize this section we notice that the family of functors Tr =

(TrΣ)Σ∈Sigpd
, together with the family θ = (θd)d∈Mor(Sigpd), with θdA,X =

θ♮X,A, is a pseudo-extranatural transformation from the pseudo-functor

Algpd(·) × Terpd(·) to the functor KSet.

.6 Transformations of Fujiwara.

We recall that one of the aims of this article is to prove the equivalence

between many-sorted clones and many-sorted algebraic theories. But to at-

tain such an aim it is necessary to begin by defining a convenient 2-category

of specifications Spfpd, and to get it, and this we will do in the section fol-

lowing this one, we need to state several concepts and operations. On the

one hand, the concept of morphism from a specification into another, on the

other hand, for two morphisms d, e from a specification (Σ, E) to another

(Λ,H), the concept of transformation from d to e, and, finally, operations

of vertical and horizontal compositions for these transformations. However,

to succeed in obtaining the 2-category Spfpd we should begin, as we do in

this section, by transforming the category Sigpd into a 2-category by adding

to it as 2-cells the adequate transformation between polyderivors.

The transformations between polyderivors that we define below are a

first step in the process of generalization (to the many-sorted case) of the

concept of transformation between families of basic mapping-formulas, as

stated by Fujiwara in [9]. And this is so because the polyderivors being, sim-

ply, morphisms from a signature into another, and not morphisms between

specifications (which, in addition to signatures, include also equations),

they will only satisfy, for every formal operation, a strict equation, instead

of an equation modulus a set of equations for the target signature as it is

the case in [9]. However, after defining, in a second step, in the last section
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of this article, the adequate morphisms between specifications, called there

pd-specification morphisms (through the polyderivors between the under-

lying signatures of the specifications), we get the full generalization of the

theory of Fujiwara in [9]. Moreover, by adding to the specifications and

the pd-specification morphisms the so-called transformations between pd-

specification morphisms, we obtain a 2-category Spfpd as announced at the

beginning of this section.

In this section we also prove that the transformations between poly-

derivors determine natural transformations between the functors associated

to the polyderivors. This fact allows us to lift: (1) the contravariant pseudo-

functor Algpd from Sigpd to the 2-category Cat, to a 2-functor Algpd from

the 2-category Sigpd to the 2-category Cat, contravariant in the morphisms

and covariant in the 2-cells, and hence to get a 2-category Algpd, and (2)

the pseudo-functor Terpd from Sigpd to the 2-category Cat to a 2-functor

Terpd from the 2-category Sigpd to the 2-category Cat, covariant in the

morphisms and the 2-cells. We notice that the pseudo-functor Algpd, will

be used in the last section to prove the equivalence between many-sorted

clones and many-sorted algebraic theories.

In order to define and investigate the transformations between poly-

derivors it is convenient to make use of some derived operations in the

Bénabou algebras of terms for the different signatures, concretely of those

in the following definition.

Definition 6.1. Let S be a set of sorts.

1. For every w ∈ S⋆⋆ and α ∈ |w|, let πwα be the derived operation

of type λ // (fw,wα) defined as 〈πfw
P

β∈α pβ
, . . . , πfw

P

β∈α+1 pβ−1〉fw,wα ,

where w is of the form

((·, . . . , ·), . . . ,

wα
︷ ︸︸ ︷

( ·
P

β∈α pβ
, . . . , ·

P

β∈α+1 pβ−1
), . . . , (·, . . . , ·)),

and, for every α ∈ |w|, pα = |wα|.

2. For every u ∈ S⋆ and w ∈ S⋆⋆, let 〈 〉u,w be the derived operation of

type ((u,w0), . . . , (u,w|w|−1)) // (u,fw) defined as

〈P0, . . . , P|w|−1〉u,w = 〈πw0
0 ◦ P0, . . . , π

w0

|w0|−1 ◦ P0, . . . ,

π
w|w|−1

0 ◦ P|w|−1, . . . , π
w|w|−1

|w|w|−1|−1 ◦ P|w|−1〉u,fw.
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3. For every n ∈ N, and u, w ∈ S⋆n, let fu,w be the derived operation

of type ((u0, w0), . . . , (un−1, wn−1)) // (fu,fw) defined as

fu,w(P0, . . . , Pn−1) = 〈P0 ◦ π
u
0 , . . . , Pn−1 ◦ π

u
n−1〉fu,w.

Henceforth, to simplify notation, we will omit some subscripts in the ex-

pressions. Moreover, for the operations of the form fu,w we adopt the infix

notation, and we will write P0 f · · · f Pn−1 instead of fu,w(P0, . . . , Pn−1),

the type, in its turn, will be u0 f · · · f un−1
//w0 f · · · f wn−1.

For the algebras of terms BTS(Σ), the operations fu,w are, essentially,

the result of gathering into a family the corresponding terms, relabeling

adequately the variables.

Recalling that the Bénabou algebras are, up to isomorphism, the fini-

tary many-sorted algebraic theories of Bénabou (see Proposition 4.5) we

will represent, henceforth, the composition of terms diagrammatically, and

the equality of two coterminal paths composed of terms by asserting the

commutativity of the appropriate diagram.

Definition 6.2. Let d and e be polyderivors from Σ to Λ. A transfor-

mation from d to e is a choice function ξ for

(BTT (Λ)ϕ(s),ψ(s))s∈S = (TΛ(↓ϕ(s))ψ(s))s∈S ,

such that, for every operation σ : w // s, the following diagram commutes

1
〈ξs, d(σ)〉

//

〈e(σ), ξw〉

��

TΛ(↓ϕ(s))ψ(s) × TΛ(↓ϕ♯(w))ϕ(s)

◦

��
TΛ(↓ψ♯(w))ψ(s) × TΛ(↓ϕ♯(w))ψ♯(w) ◦

// TΛ(↓ϕ♯(w))ψ(s)

or more briefly, such that ξs◦d(σ) = e(σ)◦ξw , where ξw is ξw0f · · ·fξw|w|−1
.

From now on, we write ξ : d /o _ // e to denote that ξ is a transformation from

d to e.

Example. Let Σ be a signature, p, q ∈ N, d = (ϕ, d) the endopoly-

derivor of Σ, where ϕ : S //S⋆ is the mapping which sends s ∈ S to the
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word fµ∈p(s) and, for (w, s) ∈ S⋆ × S, dw,s the mapping from Σw,s to

TΣ(↓ϕ♯(w))ps which sends σ ∈ Σw,s to

(σ(vw0
0 , vw1

p , . . . , v
w|w|−1

(|w|−1)p), . . . , σ(vw0
p−1, v

w1
2p−1, . . . , v

w|w|−1

|w|p−1)),

and e = (ψ, e) the endopolyderivor of Σ, where ψ : S // S⋆ is the map-

ping which sends s ∈ S to the word fν∈q(s) and, for (w, s) ∈ S⋆ × S,

ew,s the mapping from Σw,s to TΣ(↓ψ♯(w))qs which sends σ ∈ Σw,s to

(σ(vw0
0 , vw1

q , . . . , v
w|w|−1

(|w|−1)q), . . . , σ(vw0
q−1, v

w1
2q−1, . . . , v

w|w|−1

|w|q−1)). Then, for an ar-

bitrary, but fixed, mapping f = (f(ν))ν∈q from the natural number q to

the natural number p, taking as ξ the element of
∏

s∈S TΛ(↓ϕ(s))qs defined,

for every s ∈ S, as ξs = (vs
f(0), . . . , v

s
f(q−1)), where, to simplify notation,

we have identified the variables in ↓ϕ(s) with their images in TΣ(↓ϕ(s))

under η↓ϕ(s), we have that ξ is a transformation from d to e. We point

out that the working out of all the details of this example, even if a little

troublesome, helps to grasp the functioning of the polyderivors and the

transformations between them.

For more examples of transformations between polyderivors we refer to

the last section of this article.

The commutativity condition in the above definition of transformation

from a polyderivor into another can be extended to the terms, as proved in

the following proposition.

Proposition 6.3. Let d and e be polyderivors from Σ to Λ and

ξ : d /o _ // e a transformation. Then ξw ◦ d♯(P ) = e♯(P ) ◦ ξu, for each term

P : u //w in BTS(Σ).

Proof. By algebraic induction in the Bénabou algebra BTS(Σ). �

What we want now is to endow the category Sigpd with a 2-category

structure. For this we provide in the following proposition the definitions

of the horizontal and vertical composition of the transformations between

polyderivors, prove the law of Godement, and define the identity transfor-

mations at the polyderivors.

Proposition 6.4. The signatures together with the polyderivors and

the transformations between the polyderivors have a 2-category structure,

denoted as Sigpd.
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Proof. Definition of the vertical composition. Given the configuration

Σ

d

!!
e //

h

== Λ

�O
�
�� ξ

�O
�
��
χ

the vertical composition of ξ and χ, defined as χ ◦ ξ = (χs ◦ ξs)s∈S , is a

transformation from d to h.

Definition of the horizontal composition. Given the configuration

Σ

d
((

e

66 Λ

h
((

i

66 Ω
�O
�
�� ξ

�O
�
��
χ

the horizontal composition of ξ and χ, defined as χ∗ξ = (χψ(s) ◦h
♯(ξs))s∈S ,

or, equivalently, as (i♯(ξs) ◦ χϕ(s))s∈S, is a transformation from h ◦ d to

i ◦ e. We have to prove that χ ∗ ξ is a transformation from (γ♯ ◦ϕ, h♯
ϕ♯×ϕ♯

◦

d) to (ν♯ ◦ ψ, i♯
ψ♯×ψ♯

◦ e), i.e., that, for every σ : w // s, we have that

(χ ∗ ξ)s ◦ h
♯(d(σ)) = i♯(e(σ)) ◦ (χ ∗ ξ)w. But this happens since ξ, χ are

transformations and h♯, i♯ morphisms.

Law of Godement. Given the configuration

Σ

d0

!!
d1

//

d2

== Λ

e0

!!
e1 //

e2

== Ω

�O
�
�� ξ

�O
�
��
χ

�O
�
�� ξ

′

�O
�
�� χ

′

we have, after the definitions of the vertical and horizontal compositions,

that

(χ′ ∗ χ) ◦ (ξ′ ∗ ξ) = (χ′ ◦ ξ′) ∗ (χ ◦ ξ).

Identities. Finally, given polyderivor d : Σ // Λ and e : Λ // Ω it is

obvious that the S-family (〈π
ϕ(s)
0 , . . . , π

ϕ(s)
|ϕ(s)|−1〉ϕ(s),ϕ(s))s∈S , denoted by idd,

is the identity transformation at d, and that ide ∗ idd = ide◦d. �

Our next goal is to prove that the transformations between polyderivors

from a signature into another, determine natural transformations between
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the functors between the categories of algebras associated to the signatures.

To accomplish this we begin by proving that every transformation ξ from

a polyderivor d to another e, both from a signature Σ to a signature Λ,

determines, for a given Λ-algebra B, a Σ-homomorphism ξB from d∗
pd(B)

to e∗pd(B).

Proposition 6.5. Let d and e be polyderivors from Σ to Λ, ξ : d /o _ // e

a transformation in Sigpd, and, for a Λ-algebra B = (B,G), let ξB be the

S-sorted mapping (ξBs )s∈S from Bϕ to Bψ, where ξBs = G♯
ϕ(s),ψ(s)(ξs) : Bϕ(s)

//Bψ(s), for each s ∈ S. Then ξB is a Σ-homomorphism from d∗
pd(B)

to e∗pd(B).

Proof. For every operation σ : w // s, in Σ, we have to prove that

Ge
σ ◦ξ

B
w = ξBs ◦Gd

σ , and for this it is enough to prove that every face, except

at most the frontal one, in the following diagram commutes

Bϕ♯(w)

(G♯
ϕ♯×ϕ♯

◦ d)w,s(σ)
//

(ξw)B

��

Bϕ♯(s) (ιBϕ⋆(s))
−1

&&NNNNNNNNNN

(ξs)
B

��

Bϕw

ιBϕ⋆(w)
77pppppppppp Gd

σ //

(ξB)w

��

Bϕs

(ξB)s

��

Bψ♯(w)
(G♯

ψ♯×ψ♯
◦ e)w,s(σ)

// Bψ♯(s) (ιBψ⋆(s))
−1

&&NNNNNNNNNN

Bψw

ιB
ψ⋆(w)

77pppppppppp

Ge
σ

// Bψs

from which it follows, necessarily, that the frontal face also commutes.

The top and bottom faces commute by definition. The back face com-

mutes because, ξ being a transformation from d to e, from ξs ◦ d(σ) =

e(σ) ◦ ξw it follows that

(ξs)
B ◦ (G♯

ϕ♯×ϕ♯
◦ d)w,s(σ) = G♯

ϕ(s),ψ(s)
(ξs) ◦G

♯

ϕ♯(w),ϕ(s)
(dw,s(σ))

= G♯
ϕ♯(w),ψ(s)

(ξs ◦ dw,s(σ))

= G♯
ϕ♯(w),ψ(s)

(ew,s(σ) ◦ ξw)

= G♯
ψ♯(w),ψ(s)

(ew,s(σ)) ◦G♯
ϕ♯(w),ψ♯(w)

(ξw)

= (G♯
ψ♯×ψ♯

◦ e)w,s(σ) ◦ (ξw)B.
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Related to the lateral faces, let us verify, e.g., that the left one commutes.

For this it suffices to prove that (ξw)B = ιBψ⋆(w) ◦ ξ
B
w ◦ (ιBϕ⋆(w))

−1. But we

have that

(ξw)B = G♯
ϕ♯(w),ψ♯(w)

(ξw0 f · · ·f ξw|w|−1
)

= G♯
ϕ(w0),ψ(w0)(ξw0)f · · ·fG♯

ϕ(w|w|−1,ψ(w|w|−1)(ξw|w|−1
)

= ξBw0
f · · ·f ξBw|w|−1

= 〈ξBw0
◦ pr

B
ϕ♯(w)

(0) , . . . , ξBw|w|−1
◦ pr

B
ϕ♯(w)

(|w|−1)〉.

Hence it suffices to prove that pr
B
ψ♯(w)

(i) ◦ ιB
ψ⋆(w) ◦ ξ

B
w ◦ (ιB

ϕ⋆(w))
−1 = ξBwi ◦

pr
B
ϕ♯(w)

(i) , for every i ∈ |w|. But this follows from the commutativity of the

following diagram

Bϕ♯(w)
pr
B
ϕ♯(w)

(i)

''NNNNNNNNNNNN(ιBϕ⋆(w))
−1

xxqqqqqqqqqqqqq

Bϕw
pr
Bϕw
i //

(ξB)w
��

Bϕ(wi)

ξBwi
��

Bψw
pr
Bψw
i

//

ιBψ⋆(w) &&MMMMMMMMMMMMM
Bψ(wi)

Bψ♯(w)

pr
B
ψ♯(w)

(i)

77pppppppppppp

�

After having proved, for two polyderivors d and e from Σ to Λ, that

every transformation ξ from d to e, induces, for every Λ-algebra B, a

Σ-homomorphism ξB from d∗
pd(B) to e∗pd(B), we prove in the following

proposition the naturalness of the involved procedure.

Proposition 6.6. Let ξ : d /o _ // e be a transformation with d and e poly-

derivors from Σ to Λ. Then the family (ξB)B∈Alg(Λ), denoted by Algpd(ξ),

is a natural transformation from the functor d∗
pd to the functor e∗pd, both

from Alg(Λ) to Alg(Σ).



2-CATEGORICAL MANY-SORTED EQUATIONAL LOGIC 87

Proof. We have to prove that, for every Λ-algebras B = (B,G), C =

(C,H) and morphism f : B // C in Alg(Λ), the Σ-homomorphism ξC◦fϕ
and fψ ◦ ξ

B from (Bϕ, G
d) to (Cψ,H

e) are identical. But this is immediate

since, for every s ∈ S, ξBs and ξCs being the realizations of the term ξs in

the respective algebras, the mappings ξCs ◦ fϕ(s) and fψ(s) ◦ ξ
B
s from Bϕ(s)

to Cψ(s) necessarily coincide. �

Once stated that the transformations between polyderivors from a sig-

nature into another, induce natural transformations among the functors

between the categories of algebras associated to the signatures, we can

properly lift the pseudo-functor Algpd : Sigpd
// Cat to the 2-cells in the

2-category Sigpd.

Proposition 6.7. There exists a pseudo-functor Algpd, contravariant

in the morphisms and covariant in the 2-cells, from the 2-category Sigpd to

the 2-category Cat, together with the accompanying natural isomorphisms

γd,e and νΣ, as defined in Proposition 5.15.

Proof. It follows from the fact that the natural isomorphisms of the

pseudo-functor are compatible with the 2-category structure of Sigpd. �

On the basis of this last proposition we can lift the category Algpd to

a 2-category as in the following definition.

Definition 6.8. We denote by Algpd =
∫∫ Sigpd Algpd the 2-category

which has as objects (0-cells) the pairs (Σ,A), where Σ is a signature and

A a Σ-algebra; as morphisms (1-cells) from (Σ,A) to (Λ,B) the pairs

(d, f), where d is a polyderivor from Σ to Λ and f a Σ-homomorphism

from A to d∗
pd(B); and as 2-cells from (d, f) to (e, g), where (d, f) and

(e, g) are morphisms from (Σ,A) to (Λ,B), the 2-cells ξ : Σ /o _ // Λ in Sigpd

such that ξB ◦ f = g.

As was the case above for algebras and transformations, our goal now

is to prove that the transformations between polyderivors from a signature

into another, also determine natural transformations between the functors

between the categories of terms associated to the signatures. To accomplish

this we begin by proving that every transformation ξ from a polyderivor d

to another one e, both from a signature Σ to a signature Λ, determines,

for a given S-sorted set X, a morphism ξX , in the category Ter(Λ), from
∐

ϕX to
∐

ψX.
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Proposition 6.9. Let d and e be polyderivors from Σ to Λ, ξ : d /o _ // e

a transformation in Sigpd, and, for an S-sorted set X, let

ξX :
∐

ψ

X // TΛ(
∐

ϕ

X)

be the T -sorted mapping defined, for each t ∈ T and each (x, s, ψ(s), i) ∈

(
∐

ψX)t, as follows

(ξX)t(x, s, ψ(s), i) = (ξs)i(v
ϕ(s)j
j /(x, s, ϕ(s), j) | j ∈ |ϕ(s)|).

Then the mapping ξX is a morphism, in the category Ter(Λ), from
∐

ϕX

to
∐

ψX.

Proof. The definition of ξX :
∐

ψX
// TΛ(

∐

ϕX) is sound since, for

every j in |ϕ(s)|, we have that (x, s, ϕ(s), j) ∈ (
∐

ϕX)ϕ(s)j and (ξs)i ∈

TΛ(ϕ(s))ψ(s)i , hence (ξX)t(x, s, ϕ(s), i) is a term for Λ of type ψ(s)i = t.

�

After having proved, for two polyderivors d and e from Σ to Λ, that

every transformation ξ from d to e, induces, for every S-sorted set X, a

morphism ξX from
∐

ϕX to
∐

ψX, we prove in the following proposition

that they are the components of a natural transformation.

Proposition 6.10. Let ξ : d /o _ // e be a transformation in Sigpd, with

d, e polyderivors from Σ to Λ. Then Terpd(ξ) = (ξX)X∈Ter(Σ) is a natural

transformation from d
pd
⋄ to e

pd
⋄ .

Proof. Because, for a morphism P : X // Y in Ter(Σ), the T -sorted

mappings ξY ◦ d
pd
⋄ (P ) and e

pd
⋄ (P ) ◦ ξX from

∐

ϕX to
∐

ψ Y are identical.

�

Let us observe that this last proposition is analogous to Proposition 6.3

but for derived operations with variables in arbitrary many-sorted sets.

Once stated that the transformations between polyderivors from a sig-

nature into another, induce natural transformations among the functors be-

tween the categories of terms associated to the signatures, we can properly

lift the pseudo-functor Terpd : Sigpd
// Cat to the 2-cells of the 2-category

Sigpd.



2-CATEGORICAL MANY-SORTED EQUATIONAL LOGIC 89

Proposition 6.11. There exists a pseudo-functor Terpd from the 2-

category Sigpd to Cat, covariant in the morphisms and the 2-cells, together

with the accompanying natural isomorphisms γd,e and νΣ, as defined in

Proposition 5.21.

Proof. It follows from the fact that the natural isomorphisms of the

pseudo-functor are compatible with the 2-category structure of Sigpd. �

We notice that the family of functors Tr = (TrΣ)Σ∈Sigpd
together

with the family θ = (θd)d∈Mor(Sigpd), where θdA,X = θ♮X,A, is a pseudo-

extranatural transformation from the pseudo-functor Algpd(·)×Terpd(·) to

the functor KSet.

.7 Equivalence of the specifications of Hall and Bénabou.

In this section we define a 2-category of specifications, Spfpd, with objects

the specifications, morphisms from a specification into another the poly-

derivors between the underlying signatures of the specifications that are

compatible with the equations, and 2-cells from a morphism into another

a convenient class of transformations between the polyderivors. In such a

2-category we prove, for every set of sorts S, the equivalence of the specifica-

tions of Hall and Bénabou for S, from which, through the pseudo-functor

Algpd, the equivalence between the corresponding categories of algebras,

Alg(HS) and Alg(BS), is obtained as an easy corollary.

For a polyderivor d : Σ // Λ, the functor d
pd
⋄ of translation from Ter(Σ)

to Ter(Λ) enables us to define the concept of pd-specification morphism

from a specification into another.

Definition 7.1. Let (Σ, E) and (Λ,H) be specifications. A pd-specifica-

tion morphism from (Σ, E) to (Λ,H) is a polyderivor d : Σ // Λ such that

(dpd
⋄ )2[E ] ⊆ CnΛ(H). We denote by Spfpd the corresponding category.

Given two pd-specification morphisms d and e from (Σ, E) to (Λ,H),

since d and e are, in particular, polyderivors from Σ to Λ, we have, in

principle, at our disposal all the transformations ξ : d /o _ // e from d to e

as potential candidates for a concept of transformation between these pd-

specification morphisms. However, the condition of commutativity for the
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transformations between polyderivors is too much strict, because it re-

quires, for every formal operation σ : w // s in Σw,s, the strict equality

ξs ◦ d(σ) = e(σ) ◦ ξw, and, actually, what could happen (and probably

the most one reasonably can hope for), as was pointed out by Fujiwara

in [9], is that, under the presence of equations, such a type of equation

holds only modulus the congruence generated by the equations in the tar-

get specification. Therefore, for the pd-specification morphisms, the notion

of transformation that we adopt, following the example of Fujiwara in [9], is

that one where the strict equality between terms is replaced by the equality

between them but relative to the congruence generated by the equations

in the target specification. These transformations, in its turn, allow us to

endow the category Spfpd with a 2-category structure.

Definition 7.2. Let d and e : (Σ, E) // (Λ,H) be pd-specification

morphisms. A transformation from d to e is a choice function ξ for

(BTT (Λ)ϕ(s),ψ(s))s∈S , such that, for every formal operation σ : w // s, we

have that ξs ◦ d(σ) ≡H e(σ) ◦ ξw.

Proposition 7.3. The specifications, the pd-specification morphisms,

and the transformations between pd-specification morphisms determine a

2-category Spfpd.

Before we prove that the specifications of Bénabou and Hall are equiva-

lent in the 2-category Spfpd, we notice that the pseudo-functor Algpd from

Sigpd to Cat has a lifting Algsp
pd to the 2-category Spfpd.

Proposition 7.4. There exists a pseudo-functor Algsp
pd from Spfpd to

Cat defined as follows

1. Algsp
pd sends a specification (Σ, E) to the category Algsp

pd(Σ, E) =

Alg(Σ, E) of its models, i.e., the full subcategory of Alg(Σ) deter-

mined by those Σ-algebras that satisfy all the equations in E.

2. Algsp
pd sends a pd-specification morphism d from (Σ, E) to (Λ,H) to

the functor Algsp
pd(d) = d∗

pd from Alg(Λ,H) to Alg(Σ, E), obtained

from the functor d∗
pd from Alg(Λ) to Alg(Σ) by bi-restriction.

3. Algsp
pd sends a transformation ξ : d /o _ // e from d to e to the natural

transformation Algpd(ξ) from d∗
pd to e∗pd.
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It is also true that the pseudo-functor Terpd from Sigpd to Cat can also

be lifted to the 2-category Spfpd as stated in the following proposition.

Proposition 7.5. There exists a pseudo-functor Tersppd from Spfpd to

Cat defined as follows

1. Tersppd sends a specification (Σ, E) to the category Tersppd(Σ, E) =

Ter(Σ, E), where Ter(Σ, E) is the quotient category Ter(Σ)/E .

2. Tersppd sends a pd-specification morphism d from (Σ, E) to (Λ,H) to

the functor Tersppd(d) from the quotient category Ter(Σ, E)=Ter(Σ)/E

to the quotient category Ter(Λ,H) = Ter(Λ)/H, which assigns to a

morphism [P ]E from X to Y in Ter(Σ, E) the morphism

Tersppd(d)([P ]E ) = [dpd
⋄ (P )]H :

∐

ϕX
//
∐

ϕY

in Ter(Λ,H).

3. Tersppd sends a transformation ξ : d /o _ // e from d to e to the natural

transformation Terpd(ξ) from Tersppd(d) to Tersppd(e).

We notice that from the 2-category Spf
op
pd×Spfpd to the 2-category Cat

there exists a pseudo-functor Algsp
pd(·)×Tersp

pd(·) and a pseudo-extranatural

transformation (Trsp, θsp) from Algsp
pd(·) × Tersppd(·) to KSet.

Finally, we prove that the specifications of Bénabou and Hall are equiv-

alent in the 2-category Spfpd.

Proposition 7.6. For every set of sorts S, the specifications BS, of

Bénabou for S, and HS, of Hall for S, are equivalent in the 2-category

Spfpd.

Proof. Let S be a set of sorts. From the signature ΣBS to the signature

ΣHS , we have the polyderivor d = (ϕ, d), where ϕ is the mapping from

S⋆ × S⋆ to (S⋆ × S)⋆ which sends (u, v) to ((u, v0), . . . , (u, v|v|−1)), while

d : ΣBS // BTS⋆×S(ΣHS )ϕ♯×ϕ is defined as

1. For every w ∈ S⋆, and i ∈ |w|, d(πwi ) = (πwi ).

2. For every u, w ∈ S⋆, d(〈 〉u,w) = (vu,w0
0 , . . . , v

u,w|w|−1

|w|−1 ).
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3. For every u, v, w ∈ S⋆,

d(◦u,v,w) = (ξu,v,w0(v
u,w0

|v| , vu,v00 , . . . , v
u,v|v|−1

|v|−1 ), . . . ,

ξu,v,w|w|−1
(v
u,w|w|−1

|v|+|w|−1
, vu,v00 , . . . , v

u,v|v|−1

|v|−1
)).

Now we prove that the definition of d is sound. For the operations πwi ∈

ΣBS
λ,(w,(wi))

, we have that

d(πwi ) ∈ BTS⋆×S(ΣHS )ϕ♯(λ),ϕ(w,(wi))

= BTS⋆×S(ΣHS )λ,((w,(wi)))

= TΣHS (↓λ)((w,(wi))),

because d(πwi ) is a word of length 1 that has as its unique component an

operation of coarity (w, (wi)).

For the operations 〈 〉u,w ∈ ΣBS
((u,(w0)),...,(u,(w|w|−1))),(u,w), we have that

d(〈 〉u,w) ∈ BTS⋆×S(ΣHS)ϕ♯((u,w0),...,(u,(w|w|−1))),ϕ(u,w)

= BTS⋆×S(ΣHS )((u,w0),...,(u,w|w|−1)),((u,w0),...,(u,w|w|−1))

= TΣHS (↓((u,w0), . . . , (u,w|w|−1)))((u,w0),...,(u,w|w|−1)),

because d(〈 〉u,w) is a word of length |w| that, for every i ∈ |w|, has as

i-th component a term of coarity (u, (wi)). For the operations ◦u,v,w ∈

ΣBS
((u,v),(v,w)),(u,w), we have that

d(◦u,v,w) ∈ BTS⋆×S(ΣHS)ϕ♯((u,v),(v,w)),ϕ(u,w)

= BTS⋆×S(ΣHS)((u,v0),...,(u,v|v|−1),(v,w0),...,(v,w|w|−1)),((u,wi)|i∈|w|)

= TΣHS (↓(((u, vj) | j ∈ |v|), ((v,wi) | i ∈ |w|))((u,wi)|i∈|w|),

because d(◦u,v,w) is a word of length |w| that, for every i ∈ |w|, has as i-th

component a term of coarity (u,wi).

From the signature ΣHS to the signature ΣBS we have the polyderivor

e = (ψ, e), where ψ is the mapping from S⋆ × S to (S⋆ × S⋆)⋆ which sends

(w, s) to ((w, (s))), while e : ΣHS // BTS⋆×S(ΣBS)ψ♯×ψ is defined as

1. For every w ∈ S⋆ and i ∈ |w|, e(πwi ) = (πwi ).

2. For every u, w ∈ S⋆ and s ∈ S, e(ξu,w,s) = (vw,s0 ◦〈vu,w0
1 , . . . , v

u,w|w|−1

|w| 〉).



2-CATEGORICAL MANY-SORTED EQUATIONAL LOGIC 93

The polyderivors d and e are, obviously, compatible with the respective

equations, hence are pd-specification morphisms.

Finally we should prove that there are invertible transformations be-

tween the identity at ΣBS and the polyderivor e◦d, as well as between the

identity at ΣHS and the polyderivor d◦e. Since both proofs are analogous,

we restrict ourselves to present only the first one.

From the identity at ΣBS into e ◦ d we have the transformation χ,

defined, for every (u,w) ∈ S⋆ × S⋆, as the term

χ(u,w) = (πw0 ◦ v0, . . . , π
w
|w|−1 ◦ v0) ∈ TΣBS (↓((u,w)))((u,(w0)),...,(u,(w|w|−1))),

and from e ◦ d into the identity at ΣBS we have the transformation ρ,

defined, for every (u,w) ∈ S⋆ × S⋆, as the term

ρ(u,w) = 〈v0, . . . , v|w|−1〉u,w ∈ TΣBS (↓((u, (w0)), . . . , (u, (w|w|−1))))((u,w)).

Then ρ(u,w) ◦ χ(u,w) is the term 〈πw0 ◦ v0, . . . , π
w
|w|−1 ◦ v0〉u,w = v0, and

χ(u,w) ◦ ρ(u,w) is the term

(πw0 ◦ 〈v0, . . . , v|w|−1〉u,w, . . . , π
w
|w|−1 ◦ 〈v0, . . . , v|w|−1〉u,w) = (v0, . . . , v|w|−1),

hence ξ and ρ are inverses. �

Corollary 7.7. For every set of sorts S, the category Alg(HS), of Hall

algebras for S, is equivalent to the category Alg(BS), of Bénabou algebras

for S.

Proof. It follows from the existence of the pseudo-functor Algsp
pd from

the 2-category Spfpd to the 2-category Cat and from the fact that the

specifications (ΣBS , EBS ) and (ΣHS , EHS ) are equivalent in the 2-category

Spfpd. �
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